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Abstract- Multi-parent crossovers have been validated 
their outperformance on several optimization problems. 
However, there are two issues to be considered – the 
number of parents and the disruptiveness caused by 
multiple parents. This paper presents a tabu 
multi-parent genetic algorithm (TMPGA) to address 
these two issues by integrating tabu search into the 
mating of multi-parent genetic algorithms. TMPGA 
utilizes the tabu restriction and the aspiration criterion 
to sift selected parents in consideration of population 
diversity and selection pressure. Furthermore, the 
resulting mating validity further adjusts the number of 
parents participating in a mating. Experiments are 
conducted with four common test functions. The results 
indicate that TMPGA can achieve better performance 
than both two-parent GA and multi-parent GA with the 
diagonal crossover. 
 

1. Introduction 

Genetic algorithms (GAs) have been validated their 
outstanding performance on a variety of optimization 
problems. The basic idea of GA is to simulate the 
mechanisms in biological evolution such as selection, 
crossover, and mutation [15]. Crossover is one of the most 
salient features in GA. It reproduces offspring by 
exchanging and recombining genetic information from two 
selected parents. This operation is believed capable of 
exploring the problem space effectively. 

The number of parents selected to crossover is 
traditionally set to two. This is reasonable because all 
sexual organisms on earth adopt two parents to reproduce 
their offspring. However, it is possible for GAs to break 
through such a limitation. Beyond two parents, Eiben et al. 
proposed two multi-parent crossovers: scanning crossover 
[7] and diagonal crossover [8, 9]. These two methods 
generalize uniform crossover and 1-point crossover 
respectively. With several common test functions, the 
experimental results indicate both scanning crossover and 
diagonal crossover can achieve better performance than 
their two-parent versions, namely uniform and 1-point 
crossover. The results also reveal that diagonal crossover 
holds a positive correlation between the accuracy and the 
number of parents from 11 to 15 parents. Such a correlation, 
however, does not hold on the scanning crossover. 

Moreover, Schippers [21]  gave an advanced analysis on 
the influence of scanning crossover upon genetic drift. 
Besides, Mühlenbein and Voigt [19, 30] introduced the 
gene pool, which consists of several pre-selected parents. 
Gene pool recombination (GPR) samples the genes used 
for recombination from the whole gene pool instead of two 
parents. The studies show that GPR and its variants are 
easier to analyze and can converge faster than two-parent 
recombination. Tsutsui and Jain [26] proposed multi-cut 
crossover (MX) and seed crossover (SX). Multi-cut 
crossover generalizes 2-point crossover and performs 
better than diagonal crossover on De Jong’s test functions. 

In addition to binary-coded GAs, Tsutsui and Ghosh [26, 
27] presented several multi-parent crossovers for 
real-coded GAs: the center of mass crossover (CMX), 
multi-parent feature-wise crossover (MFX), and seed 
crossover (SX). Their experimental results reveal that 
multi-parent crossovers can lead to better performance in 
spite of its dependence upon problem types. Simplex 
crossover (SPX) [29] was proposed to reproduce by 
sampling a simplex formed from multiple parents. The 
results show its well performance with three or four parents 
for multimodal or epistatic problems. Kita et al. [16] 
introduced multiple parents into the unimodal normal 
distribution crossover (UNDX) to enhance the diversity of 
offspring. This multi-parent extension of UNDX 
demonstrates its improvement in search ability on highly 
epistatic problems. 

For multi-objective optimization problems, Lis and 
Eiben [17] introduced the concept of sex into multi-parent 
crossover. The sex or gender, which is appended in each 
chromosome, indicates a specific criterion to optimize; that 
is, the fitness is evaluated by the corresponding objective 
function of sex. Esquivel et al. [11, 12] extended this 
method to MSPC-GA by allowing multiple parents per sex 
and multiple crossovers per mating. This approach obtains 
a satisfactory result in the number of non-dominated 
solutions on the Pareto front. The study [18] further 
enhances this method by incorporating local search and 
achieves better results. 

Two excellent overviews of multi-parent crossovers can 
be found in Eiben’s studies [4, 5]. These researches have 
demonstrated the effectiveness of multi-parent crossovers 
in binary-coded or real-coded GAs on functional 
optimization problems as well as multi-objective problems. 
However, there are two advanced issues for multi-parent 



crossovers. The first issue is the increasing disruptiveness 
caused by multiple parents. This disruptiveness on the one 
hand leads to a more diverse exploration which can prevent 
premature convergence, but on the other hand, it slows 
convergence speed at the same time. Second, the number of 
parents adopted is more than two but nevertheless, is 
traditionally set fixed in multi-parent crossovers. Adaptive 
methods for two-parent crossover or mutation have 
obtained many successful results in GAs [6, 14, 23]. 
Accordingly, the idea of adaptively tuning the number of 
parents emerges. In this paper, we integrate the strategy of 
tabu search (TS) into multi-parent crossover to address 
these two issues. The proposed method, called tabu 
multi-parents genetic algorithm (TMPGA), uses the tabu 
restriction and the aspiration criterion to sift the mating of 
multiple parents. The advantage of such a strategy has been 
verified for two-parent crossover to harmonize selection 
pressure and diversity maintenance [24, 25]. Furthermore, 
the tabu strategy adjusts the number of parents according to 
the condition of mating pool. Consequently, the 
disruptiveness caused by multi-parent crossover is 
controlled in consideration of exploitation and exploration. 
The effectiveness of TMPGA is examined by several 
experiments and comparisons with traditional two-parent 
crossover and multi-parent diagonal crossover on four 
common test functions. 

The rest of this paper is organized as follows. In the next 
section, we give a detailed description of the proposed 
TMPGA. Section 3 presents performance comparisons and 
result analysis of TMPGA. Finally, conclusions are drawn 
in Section 4. 

2. Tabu Multi-Parent GA (TMPGA) 

TMPGA integrates the strategy of tabu search into the 
mating strategy of multi-parent genetic algorithms. First, 
the tabu list restricts the mating in an incest-prevention 
manner to maintain diversity. Second, the aspiration 
criterion releases the restriction on mating to supply 
selection pressure. Such a synergy of tabu list and 
aspiration criterion is expected to achieve a harmony in 
diversity maintenance and selection pressure. Moreover, 
the outcome of mating affects the number of parents 
participating in multi-parent crossover. Therefore, by the 
integration of TS, a harmony in mating and a further 
control on the disruptiveness for multi-parent GA are 
obtained. However, some corresponding modifications are 
necessary for GAs to incorporate the strategy of TS. The 
following subsections provide more detailed descriptions 
about the components for multi-parent GA to combine the 
strategy of TS. The proposed algorithm TMPGA is 
presented afterward. 

2.1. Representation 
Tabu Search (TS) uses a memory structure, called tabu list, 
to guide the search in consideration of diversification and 
intensification [13]. To accommodate such a memory 
structure to GA, two components are necessarily appended 

to the representation of chromosomes. First, a clan number 
is introduced to identify chromosomes. This number is 
assigned uniquely at the initialization stage. During 
reproduction offspring inherit the clan number from one of 
their parents. The second component is the tabu list, which 
records a set of forbidden clans to mate. Figure 2.1 
illustrates a representation in binary-coded GAs. The genes 
are encoded in bit strings concerning the solutions of the 
optimizing problem. Additionally the clan (8) with the tabu 
list (2, 6) carries the information for tabu mating strategy. 

 
 

Figure 2.1 Representation of chromosomes 
 

2.2. Mating Strategy 
In TMPGA, the mating of multiple parents is not unbridled 
but is restricted by the strategy of tabu search. This 
restriction further affects the number of parents 
participating in a reproduction. 

The mating strategy of TMPGA is made up of two 
forces in TS, specifically, the tabu restriction and the 
aspiration criterion. First, the clans indicated in the tabu list 
mean that these clans are forbidden for one to mate. A 
check is performed on the selected parents to see whether 
the mating of these parents is forbidden or not. Such a 
restrictive mechanism is helpful to maintain population 
diversity through an incest-prevention manner [2, 10, 22]. 
However, for a moderate restriction and a reduction of 
computation, TMPGA adopts the concept of polygamy; the 
tabu-checking procedure is only performed upon the first 
selected parent with other selected parents. As Figure 2.2 
shows, the tabu restriction occurs when the first parent 
detect its clan appears in another parent’s tabu list, and vice 
versa. Due to the tabu restriction, this mating is judged 
invalid unless the following aspiration criterion is satisfied. 

 
 

 

Figure 2.2 Tabu checking procedures 
 
The aspiration criterion is another measure used to 

judge mating. This criterion defines that the tabu restriction 
for a mating is overridden if any of offspring reproduced by 
this mating is superior to the best chromosome so far. In 
other words, a mating is allowed by the aspiration criteria 
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even though the mating is forbidden by the tabu restriction. 
This release from restriction provides moderate 
reinforcement in selection pressure. The interaction of the 
tabu restriction and the aspiration criterion consequently 
achieves a harmony in diversity maintenance and selection 
pressure. 

A mating is classified invalid and is not allowed if this 
mating incurs a tabu restriction but is unable to meet the 
aspiration criterion. Only offspring from a valid mating can 
be put into subpopulation. Besides, after a valid mating, 
parents have to update their tabu lists: the first parent adds 
all mates’ clans to its tabu list while the rest of the parents 
just add the first parent’s clan to their tabu lists. Afterward, 
offspring inherit the updated tabu list from one of their 
parents. The operation of updating the tabu list works in a 
FIFO manner. The oldest clans will be released from the 
tabu list while some new forbidden clans are added. These 
released clans regain the permission for one to mate. Figure 
2.3 illustrates the procedures of updating the tabu list. The 
first parent adds the clans (3, 4) of the mates to its tabu list; 
other parents only add the clan (8) of the first parent to their 
respective tabu list. The released clan (6) means that the 
first parent regains the permission to mate the 
chromosomes with clan (6). 

 
 

Figure 2.3 Update of tabu list 
 
 
TMPGA further uses the resulting validity of mating to 

control the number of parents. If a mating is valid, its 
offspring will be put into subpopulation normally. 
Otherwise, in case of an invalid mating, TMPGA will 
remove all the tabu parents to enable this mating valid, and 
then re-apply multi-parent crossover with the remaining 
parents to reproduce offspring. Provided all mates of the 
first parent are removed, the selection operator will 
re-choose another mate from population to keep the mating 
has at least two parents. Accordingly, the number of 
parents varies with the situation of population. In the 
beginning of evolution, the parent number is large because 
the mating is less likely to incur a tabu restriction and has a 
higher possibility to meet the aspiration criterion. This 
large number of parents leads to a more diverse search 
around the problem space [8]. Such an enhanced 
exploration can contribute to a better solution quality. Next, 
the number of parents is on the decrease with convergence. 
During evolution the population becomes more and more 
similar and then results in a higher probability to get 
invalid mating. Correspondingly, the number of parents 

will decrease with the growing number of tabu parents in 
an invalid mating. Finally, the number of parents will 
decline to two; at that time, multi-parent crossover will 
degenerate to traditional two-parent crossover. This 
declining procedure keeps the search from violent 
perturbation and allows it more exploitation when the 
search approaches the promising region of problem space. 
On the whole, this adaptive strategy of varying parent 
number will take exploration and exploitation into account 
in different phases of evolution. 

2.3. TMPGA Algorithm 
The proposed algorithm TMPGA is described in Figure 2.4. 
Most procedures of TMPGA follow the original 
architecture of GA except the screening process, i.e. steps 
12~13, conducted by the tabu strategy. Additionally, a 
special rule is designed for the variation of parent number n 
in order to reduce the computation cost of the tabu 
checking. This rule initially sets the trial number of parents 
to a maximal value and then changes the number to the 
largest parent number of valid mating in each generation. 
As the trial number is reduced to two, the checks of tabu 
restriction and aspiration criterion are omitted because at 
this time multi-parent crossover degenerates to a 
two-parent version. The reason for this rule is that the 
population will gradually lose its diversity and yield a 
higher and higher probability of invalid mating; that is to 
say, it takes increasing computation on the removal of tabu 
parents. By the rule, the number of parents is defined 
according to the situation of population in the preceding 
generation. Generally the rule causes fewer and fewer 
parents participating in a mating. Hence, the number of 
trivial tabu checking can be significantly reduced, 
especially when the population loses most of its diversity 
and the probable number of parents is two. 
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Figure 2.4 The algorithm TMPGA 
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3. Performance Evaluation 

In this paper, several experiments are conducted to evaluate 
the performance of TMPGA. A test suite consisting of four 
common test functions [1, 3, 19] is implemented for each 
experiment: De Jong’s second test function (F2), the 
Rastrigin (RAS), the Schwefel (SCH), and the Griewangk 
(GRI). Table 3.1 presents these test functions and the 
related parameters used in our experiments. Besides, 
classic two-parent GA and multi-parent GA (MPGA) are 
implemented to verify the superiority of TMPGA. 

The schemes of GA employed in our experiments are 
generational GA, bit-string representation, roulette wheel 
selection, flip mutation, and elitism. A population size of 
200 chromosomes is used for all problems. Each 
experimental setting includes 50 trials; each trial runs 100 
generations. Population is initialized randomly at each run. 
For all algorithms the crossover rate cP  is fixed to 1.0 and 
the mutation rate mP  is set to (1/chromosome_length). 
Besides, traditional 1-point crossover is adopted for GA, 
and diagonal crossover is used for MPGA. The algorithm 
TMPGA does not prescribe the option of multi-parent 
crossover; however, in order to give a fair comparison, the 
crossover that TMPGA adopts here follows the same 
multi-parent crossover, namely diagonal crossover, as 
MPGA in all experiments. The diagonal crossover of 
MPGA adopts 15 parents because of its best performance 
among our several experiments on the extent of 11 to 15 
parents. For TMPGA, the trial parent number is also set to 
15 initially, and then it is adjusted adaptively by the 
strategy of tabu search as mentioned in Chapter 2. The size 
of tabu list in TMPGA is empirically set to 10 for a 
reasonable restriction. 

3.1. Performance Comparison 
Figure 3.1 compares the convergence of TMPGA with that 
of GA and diagonal-crossover (MPGA) on four test 
functions. The results show that TMPGA converges faster 
than both GA and MPGA on all functions except the first 
half of convergence on function F2. Besides, MPGA 

converges faster than GA on functions SCH and GRI but 
slower than GA on F2 and RAS. In terms of solution 
quality, TMPGA yields better solutions than GA does on all 
functions and MPGA does on function RAS. Nevertheless, 
the differences of the best solutions obtained from MPGA 
and TMPGA are not significant on functions F2, SCH, and 
GRI. 

The results shown in Figure 3.1 are compared with 
respect to generations. TMPGA, however, spends 
additional computation on tabu checking and invalid 
mating in each generation. Thus, the comparison by 
generations may not be so fair. Considering this, we further 
compare convergence in terms of running time. Figure 3.2 
depicts the convergence comparisons regarding the time 
taken in each generation. The comparing algorithms are 
coded in C language and run on an Intel Pentium III – 
1.7GHz machine. From Figure 3.2 we conclude that the 
additional computation somewhat decreases TMPGA’s 
outperformance upon convergence speed if compared with 
the results in Figure 3.1. Nevertheless, TMPGA still 
achieve a faster convergence than GA does on functions 
RAS, SCH, and GRI. TMPGA also converges faster than 
MPGA on all test functions even though the convergence 
of TMPGA and MPGA are close on functions SCH and 
GRI. This superiority supports that the extra computation 
cost of TMPGA is worthwhile in terms of convergence 
speed. 

Table 3.2 quantifies the improvements of MPGA and 
TMPGA in the convergence speed of GA. The values 

MPGAt  and TMPGAt  respectively indicate the generations 
(time) taken for MPGA and TMPGA to achieve GA’s best 
fitness in our experiments. The results in Table 3.2 show 
that TMPGA converges faster than GA by 24 to 66 
generations or by 0.881 to 3.352 seconds; in other words, 
TMPGA saves 22% to 69% of GA’s convergence time. 
MPGA also converges faster than GA except the 
convergence on RAS, in which MPGA performs similar to 
GA. Altogether, these comparisons further demonstrate 
that TMPGA is capable of a more efficient convergence 
and a more constant outperformance than that of MPGA. 
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Figure 3.1 Comparison of GA, MPGA, and TMPGA in terms of generations 
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Figure 3.2 Comparison of GA, MPGA, and TMPGA in terms of running time 



 
 

Table 3.2 Generations (time) for MPGA and TMPGA to achieve the best fitness of GA 

 GAt  MPGAt  TMPGAt  GAMPGAt −∆ (%) GATMPGAt −∆ (%) 

F2 96 (4.840) 53 (2.036) 35 (1.488) 44.8 (57.9) 63.5 (69.3) 

RAS 100 (4.398) 97 (4.277) 62 (3.041) 3.0 (2.8) 38.0 (30.9) 

SCH 100 (4.207) 38 (1.478) 34 (1.470) 62.0 (64.9) 66.0 (65.1) 

GRI 100 (4.009) 84 (3.289) 76 (3.128) 16.0 (18.0) 24.0 (22.0) 

Xt : generations (time) for the algorithm X  to achieve GA’s best fitness 
GAXt −∆ (%): relative deviation of generations (time) Xt  and GAt  

 
 
 

3.2. Analysis of Results 
Furthermore, we examine the impact of tabu restriction and 
aspiration criterion upon TMPGA’s performance and 
number of parents. As Figure 3.3 shows, the numbers of 
tabu events peak around 40 generations on F2 and around 
20 to 25 generations on RAS, SCH, and GRI. In 
comparison of this circumstance with the convergence of 
TMPGA on Figure 3.1, we find that the peak of tabu events 
corresponds to the point starting slow convergence. We 
attribute such a circumstance to the exhaustion of 
population diversity. During evolution the population 
gradually loses its diversity and becomes more and more 
similar. When the population is so similar that it fills a lot 
of chromosomes with the same clans, the probability of 
tabu events will raise correspondingly. On the other hand, it 
reflects that the population is too similar to explore the 
problem space effectively. The convergence of TMPGA, 
therefore, gets slow in correspondence with the peak of 
tabu events. 

Figure 3.4 depicts the variation in the parent number of 
TMPGA on four test functions. Clearly, the number of 
parents decreases with evolution until two. This tendency 
results from the decreasing population diversity. As 

mentioned in Chapter 2, the validity of mating determines 
the number of parents in TMPGA. Initially the population 
is diverse and the best solution obtained is far from the 
global optimum; thus it is less likely to incur a tabu 
restriction but easier to meet the aspiration criterion. As 
shown in Figure 3.3, the beginning has only a few tabu 
events and relatively many aspiration events. In the course 
of evolution, the probability of valid mating gets lower and 
lower because of the growing tabu events and the declining 
aspiration probability. On the whole, the number of parents 
declines with the evolution as Figure 3.4 shows. Hence, the 
disruptiveness caused by multi-parent crossover is 
progressively restrained, especially when the search 
approaches to the promising region. However, the effect of 
tabu strategy upon the number of parents is not one-way 
but interactive. The tabu restriction reduces the number of 
parents while this reduced number of parents will further 
lower the probability to incur tabu restriction in the next 
generation. All in all, the synergy of tabu restriction and 
aspiration criterion achieves not only a harmonious mating 
but an adaptive restraint on disruptiveness; consequently, it 
leads to the outperformance of TMPGA. 
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Figure 3.3 Variation in number of tabu events (left) and aspiration events (right) for TMPGA on four test functions 
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Figure 3.4 Variation in the number of parents for TMPGA on four test functions 

 
 
 

4. Conclusions 

This work presents a tabu multi-parent genetic algorithm 
(TMPGA), which integrates the strategy of tabu search into 
the mating of parents for the multi-parent crossover. First, 
an additional memory structure consisting of a clan number 
and a tabu list is appended to the representation of 
chromosomes. This memory structure records the 
trajectory of evolution and further acts as the basis of 
mating strategy. The tabu restriction contributes to 
maintain diversity in an incest-prevention manner by 
forbidding parents to mate with the chromosomes on the 
tabu list. The aspiration criterion, on the other hand, 
supplies moderate selection pressure by overriding the tabu 
restriction for those superior solutions. TMPGA utilizes the 
synergy of tabu restriction and aspiration criterion to 
control the mating of multiple parents for a good balance of 
diversity maintenance and selection pressure. The outcome 
of mating further adaptively adjusts the number of parent 
for the multi-parent crossover. Therefore, the 
disruptiveness caused by multiple parents is restrained 
progressively in the course of evolution. 

The effectiveness of TMPGA is verified by the 
experiments on four common test functions. The results 
present the influence of tabu restriction and aspiration 
criterion upon the number of parents; nevertheless, the 
parent number affects tabu restriction as well. TMPGA’s 
well performance reflects the advantages of such an 
interaction. The performance comparisons indicate that 
TMPGA achieves faster convergence and better solution 
quality than classic two-parent GA and multi-parent GA 
with diagonal crossover on the test functions. Altogether, 
these favorable results demonstrate the superiority of 
TMPGA due to the integration of tabu search into the 
mating strategy of multi-parent genetic algorithms. 

However, more tests and analyses are needed to confirm 
the general outperformance of TMPGA. This paper only 

uses the diagonal crossover as the multi-parent crossover in 
TMPGA. More multi-parent crossovers such as scanning 
crossover or multi-cut crossover are needed to test for 
validating TMPGA’s effectiveness on multi-parent GAs. 
On the performance evaluation, we compare the 
approaches in terms of running time to present the general 
influence of additional computation in tabu and aspiration 
checking upon the convergence. Nevertheless, other 
criterion, such as the number of function evaluations, 
should be further considered. Besides, in this paper, 
performance is only evaluated experimentally with 
functional optimization problems. Currently we are 
conducting a series of comprehensive experiments on the 
components of TMPGA. Theoretical analysis and further 
improvements in TMPGA are also underway. 
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