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Abstract—This paper presents a Markov model for the conver- for MPGAs in the OneMax problem is derived accordingly.
gence of multi-parent genetic algorithms (MPGAs). The proposed These theoretical results are further verified by a series of
model formulates the variation of gene frequency caused by experiments.

selection, multi-parent crossover, and mutation. In addition, it . . . .
reveals the pairwise equivalence phenomenon in the number The_ rest of this paper is (_)rganlzed as follows. Section 2
of parents and identifies the correlation between this number describes OB-Scan and Section 3 analyzes the gene frequency
and the mean fitness in the OneMax problem. The good fit affected by the MPGA operators. Next, in Section 4 we
between theoretical and experimental results demonstrate the model MPGAs with Markov chains. Theoretical results and

capability of this model. Moreover, the superiority of multi-  ayperimental validation are presented in Section 5. Finally,
parent crossover In convergence fitness over 2-parent crossover . . .
conclusions are drawn in Section 6.

is validated theoretically as well as empirically.
. INTRODUCTION II. OCCURRENCEBASED SCANNING CROSSOVER

Multi-parent genetic algorithms (MPGAS) are genetic al- (OB-Scan)
gorithms using multi-parent crossovers. Traditionally, genetic Occurrence based scanning crossover is one aitaening
algorithms (GAs) adopt two parents in crossover to reprodu€g@ssovers[11] — a multi-parent generalization afniform
offspring. This idea is reasonable because, to the bestc§pSsoverIn uniform crossover, the donor for each offspring
our knowledge, the form of sexual reproduction on the Earfigne is randomly picked from two parents. Extended to more
is absolutely of two parents. Multi-parent crossovers bre&an two parents, scanning crossovers choose the donor at
through this natural limitation by allowing more than twdandom or using heuristics. According to different strate-
parents in the process of crossover. In a sense, multi-par@i§s, Eiben et al. [11] proposed three variations of scanning
genetic algorithms are said to be multi-parent generalizati§fPSsoversuniform scanning crossovet)-Scan),occurrence
of genetic algorithms. based scanning crossov@®B-Scan), anditness based scan-
Several multi-parent crossovers have been proposed R#Rg crossove(FB-Scan). In this paper, we only discuss OB-
MPGAs and shown their power in a variety of optimizatioPCan.
problems [8], [10], [21]. However, most of these crossovers Rather than random, OB-Scan determines offspring genes
are validated empirically. Theoretical analysis on the effect 8epending on the occurrence of parental genes at that locus.
multiple parents upon crossover or upon the whole MPGA faPecifically, it picks themajority of parental gene values as
lacking. Thus, the role of parent numbers in MPGAs is stifhe offspring gene for each locus. Note that in this paper OB-
open. Scan is defined to break ties by randomtyioosing a binary.
This paper presents a Markov model for exploring thExamples of2-parent OB-Scan (corresponding to uniform
influence of raising parents in MPGAs. Specifically, we invesrossover) andi-parent OB-Scan are given in Fig. 1. The
tigate occurrence based Scanning Crosso\(@B_Scan) [11] formal definition of the components of GAs and OB-Scan are
— a multi-parent generalization efiform crossovef19]. In  drawn below.
addition, this paper focuses on the OneMax problem. Even

: ) i Parent1 [10[1]1]o]o[0[1]
though the OneMax problem is relatively easy, the analysis :are”g g parent2 [0Jo[T[1[1[o[{]
: . . arent2 [1[aJo[1[1[4]o]1] >
on it foun(_js a ba§|c understanding of hpw the GA operators oftspring LT TR Parent3 [0]0]1]0[1[4]0]0]
work and interact in the course of evolution. Furthermore, the Parent4 [0[1[1]o[1]0[1][1]
. . e B the majority
analytical models for the OneMax problems are promisingly [ random selection offspring [ [N KN [

applicable to other problem domains.

In the procedures for analysis, first we investigate the gepg. 1. Examples ot-parent OB-Scan (left) and-parent OB-Scan (right)
frequency affected by selection, multi-parent crossovers, and
mutation individually. Based on gene frequency, we model by

Markov chains the behavior of MPGAs. This Markov model . _ _ N
1The original OB-Scan [11] breaks ties by directly inheriting the genes of

formulates the. Va”at'o_n_ of gene frequency in the Cou.rse fﬂt? first selected parent. However, random tie break conforms to generalization
MPGA's evolution. Additionally, the mean convergence fitness uniform crossover.



Definition 1 (Chromosome and Population): frequency. In the analysis we will make use of the well-known
1) A chromosome? is encoded as a bit string, i.€. def  pinomial distribution The probability mass function (p.m.f) of

(c1,...,c) € {0,1}, wherec; denotes ayeneand! is Pinomial distribution5(n, p) is
the chromosome length n\ , -
2) A population C' is a set of chromosomes? % B(a;n,p) = (x)p (1-p)""
{1,...,Cn}, whereé € {0,1} andm is the popu- . _
lation size. A. Variation by Selection
Definition 2 (OB-Scan)Given n parentsci,...,¢, € C This section examines how selection affects gene frequency.
selected from populatiofi, OB-Scan reproduces the offspringRecall the fact that most of the selection operators in GAs
¢ =Xop(C1,...,G) =(ch,...,c}) by depend on fithess — a phenotypic property of chromosomes.
) —— Conversely, gene frequency concerns the genotypes of chro-
0 it >5-1(G); <3 mosomes. The mapping from genotypes to phenotype is
¢ =x1 it >0_,(G);,>% fori=1,....1, problem-dependent in essence. In this paper we focus on
rand(0,1) otherwise the OneMax problem. The fithess of the OneMax problem

provides a direct way to bridge this gap between phenotype
where (¢;), denotes the'™ gene of the chromosomg, and gng genotype.
rand (0,1) is a binary random function. Definition 5 (The OneMax Problem)fhe OneMax prob-
lem is to find the binary string’ = (c1,...,¢) € {0,1},

I1l. VARIATION OF GENE FREQUENCY ) - . k
Q which maximizes the following functionf : {0,1} —

Gene frequency is widely used as a quantitative measure gf 1,...,0}:

genetic variation in population genetics [15]. It also suffices to l

clue us in on the course of evolution in GAs. In this section we f@) = Z G

analyze the variation of gene frequency caused by selection, k=1

OB-Scan, and bit-flip mutation. Lemma 1:In GAs, the covariance of the genes at any two
Definition 3 (Gene Frequency)The gene  frequency 0Ci u,v € {1,...,1} has

pr(a,t) is defined as the proportion of allele at locus
k in the population at time. Let C = {¢,...,C,} be a
population at timet and letCy(a) = {¢ € C | ¢, = a} be
the subset in which chromosomes possess alled¢ locusk.
The gene frequency

Cov(cy, cy) = 0.
Proof: Let C, be the subset in which chromosomes
possess alleler at locusk. Since

1
E[cucv] = ﬁ |Cu| |C'u| = PuPv;

def |Cr()] .
pr(a,t) = o The covariance

where|C| and|C}(a)| represent the cardinality of sét and ~ Cov(cu, ¢v) = Elcucy] — Elcu|E[ey] = pupy — pupy = 0.
Cr(a), respectively. -
In GAs chromosomes are represented as binary strings. TNJS

. - - ext, we give a definition of mean fitness, which will be
there exist two gene frequencieg(1,t) and py(0,t) with extensively discussed in this paper. The relation between mean
pr(1,t) = 1 — pr(0,t) for every locusk and timet. For y Paper.

simplicity, we refer to the gene frequengy.(1,t) as p(¢) fitness and gene frequency will be presented afterwards.
L b k y +1 1 T 1 -
and refer topy (0, ) as (1 — py()). Incidentally, the symbol Definition 6 (Mean Fitness)The mean fithessf a popula

pr(t) is referred to a®, while the indication of time is not tion C'is defined as

in effect. 1
Remark 1:Let ¢, be thek™ gene of chromosomé. In d |C| ;ﬂa'
GAs, for a populatiorC' at timet Lemma 2:Let p;, be the gene frequency at locésIn the
def 1 OneMax problem we have the megnand variances? of
pi(t) Z Ele] = = e, (1) fitness:
m ceC !
o (t) = Var(cr) = pi(1 — pr). ©) = m
Definition 4 (Variation of Gene Frequency in GAd)et s, k=1

z, m, and r denote the selection, crossover, mutation, and ) ! ) !
replacement (survivor), respectively. The process of GA with O = Z% = Zpk(l —Dk)
respect to gene frequency can be expressed as k=

pir(t) = pi(t) = pi(t) = P (t) — et +1). (3)

l l
The successive sections will investigate the influence of se- f=E[f]=E ch _ ZE cx] = Zpk'
lection, multi-parent crossovers, and mutation on the gene

k=1 =1
Proof: The fitness mean can be simply derived by (1):



Using Lemma 1, we have the fitness variance T |E?[o]+ Var(o) T Var(o)
E[I°] = = ALY B
l Vi E?[o] Vi E?[o]

0% = Var(f) = Var <Z ck> [ |
k=1 Remark 2:As Var(c) < E?[s], the expected selection
! ! intensity for gene frequency becomes
Z r(ek) + Z Cov(cy, cy) = Zai. 7

=1 uFv k=1 E [IP] ~

B In this paper we utilize the above expectation as the selection
To compute the variation of gene frequency caused by setensity for gene frequency at any locksConsequently, the
lection, here we introduce the concepts#lection intensity variation of gene frequency caused by selection approximates
which originates from quantitative genetic [12] but now iso
widely used in evolutionary computation community as a P~ i+ <I> o @
guantitative measure of selection pressure [5], [16]. The defini- Vi
tions of selection differential and selection intensity are given a practical advantage of (7) is its correlation to selection
as follows. B - intensity Z. Accordingly, we can utilize the existing analyt-
Definition 7 (Selection Differential)Let f(¢) and f*(¢) be jcal results on the selection intensify of diverse selection
the mean fitness of the population and that of selected pareg§@rators in GAs, e.g. [5]. Note that the selection intensity for
at generatiort, respectively. Theselection differentialS(t) is gene frequency in (7) is based on the assumptianc) <
defined as ) B E?[o]. Even though this assumption does not necessarily hold
S(t) = () — f(¢). in the course of evolution, we will empirically show this
Definition 8 (Selection Intensity)Let S(¢) be the selection approximation can work well in Section 5.
differential andor(t) be the standard deviation of fitness i -
a population at ge(nizratidn The selection intensitys defined 'B. variation by OB-Scan

as B B Here we analyze the gene frequency affected by OB-Scan.
() — S(t)  f(t) — f(t) 4 Since OB-Scan is a multi-parent generalization of uniform
(t) = r(t) t ' ) crossover, the analyses and results presented here are appli-

) op(t)
In this paper we addmonally deflne selection intensity for cable to uniform crossover as well.
gene frequencyo measure the effect of selection upon genBefore conducting the analysis of OB-Scan, we introduce the
frequency. incomplete beta function for simplifying the expression of
Definition 9 (Selection Intensity for Gene Frequency): equations .
The selection intensityZ; for gene frequency at locus Definition 10 (Incomplete Beta Function)he incomplete

ke {1,...,1} is defined as beta functionis defined as
p def pk Pk I.(a.b def 1 /z o=1(1 _ b1t
v «(a,b) Beta(a.b) (1—8)""dt,

Lemma 3:In the OneMax prokblem the expected selection

intensity for gene frequency wherea, b > 0 andBeta(a, b) is thebeta function.

The mcomplete beta function holds the following properties:

1) (26.5.24 [1]) For binomial distributio®(n, p),
E[17] = \% 1+ \;21"[(00}). ®) ) ( (1]) (n,p)
Proof: The definition of selection intensity for gene > B(isn,p) = I(a,n —a+1). (8)
frequency tells '
. . . - 1
SinceZ? ando;, are independent, averaging all loci gives = = 2*(1-zx) .
k Ok p ging g Ia:(aab> aoBeta(a,b)x (1 JJ) +Iz(a+11b) (9)
E[p°’] — E[p| = E [Z"] E[0]. (6) Now we embark on the analysis of OB-Scan’s influence on

According to Lemma 2 and eq. (4), the above equation c8§N€ freauency.
be rewritten as Lemma 4:Suppose we have the gene frequepgyof the

selected parents. The gene frequency, denoteg?byof the

E[I?] = Elp’] ~Elp) _ f*~f _ Zor offspring reproduced by-parent OB-Scak,;, with n € N+
E[o] IE[o] ~ IE[o] has
ob — I s , ,
I\/m I./IE|o?] I |E[0? Py P (a,a)
B IE[o] - IE[o] - ViV E2[o] whereI, denotes the incomplete beta function ane- [%].

Proof: Let X be the number of parents possessing the
The varianceVar(o) = E[0?] — E?[o]. Thus, allele 1 at locus: amongn selected parents. Since the process



of random selection is independent, it is a Bernoulli procesnutated). Letc;, be the gene at locuk before mutation and
Performing this selectiom times, the numberX holds a ¢}, be the gene after mutation. The gene frequency

binomial distribution with p.m.f. ,
pit =Pr{c;, =1|cp =0} Pr{c; =0}

) ()" (1 —p)" ™. +Pr{c;, =1|cx =1} Pr{cy = 1}
= ’Ym(l *pi) + (1 - ’Ym)pglg
= pi + ¥m (1 — 2pf).

Pr(X =x) = B(z;n,p;) = (Z

Let ©; denote the event that OB-Scan assigns the allele
to the offspring locusc. According to Definition 2, OB-Scan

yields -
1 ifx>n/2,
Pr®, | X =2)={0 if z<n/2 IV. M ODELING WITH MARKOV CHAINS
3 ifz=n/2 Markov chains have been used to model the exact behavior

of GAs [2], [13], [20] and to analyze the convergence of GAs
[71, [9], [17], [18]. In this paper, we use Markov chains to
model the evolution of gene frequency. Furthermore, the mean

For OB-Scan with odd number of parents £ 2a — 1 with
a € Ns1), from (8) we have

ob n fitness in the OneMax problem is derived from this Markov
PR =Pr(D1) = Pr(®1 | X =x) Pr(X =) model.
=0
2a—1 A. The Model for Gene Frequency

In light of gene frequency, GA can be viewed as a stochastic
process manipulating the number of allele 1 (or 0) in the
population: Let random variableSy(t) € {0,1,...,m} be
the number of allele 1 at locus at generatiort. The process

= Z B(z;2a — 1,p;) = Ip: (a,a).

Similarly, for OB-Scan with even number of parents=£ 2a
with ¢ € N), we have

. 2a 1 of GAs on gene frequency can be represented Glg(¢) :
=Y B(x;2a,p}) + 5 B(ai2a,p}) t € Z,}. Since for everyi, iy, ..., ir1 € {0,1,...,m} the
r=a+1 , process{G(t)} satisfies
= Tol0.0) = ey PH (PR Pr{Gr(t + 1) = irg1 | Gult) = v, ... Gr(0) = in)
_p D= _
5 () ey (from (9)) HGK(E 1) = de | Gule) = i),
I 1 (2a)! the procesq Gy (t)} is a Markov chain. The formal definition
= I: (a,a) + {_ (2a) -2 (p;)* (1 —p;)* of the Markov chain for gene frequency is given as follows.
* al'(a)T'(a) ~ 2 ala! Definition 11 (Markov Chain for Gene Frequencyip the
= Ip; (a,a). Markov chain {G(t)} for gene frequency at locus €

- {1,...,1} in GAs,
Corollary 1 (Pairwise Equivalence)Letpzb(”) bethe gene 1) thestateis defined as the number of alleleat locusk in

frequencyp}® corresponding tor-parent OB-Scan. Fon € the population; thereby the state spacg(sl, ..., m}.
2N andn > 4, A statei in {Gx(t)} gives the gene frequency
ob(n) _ _ob(n—1) .
Dy, = Px : i
Proof: Trivial (since [%2]| = [251] in Lemma 4). m pr =
C. Variation by Mutation 2) The transition matrix of {G},(t)} is defined asP '
In this work, the analysis of mutation focuses on the  (p;;), wherep;; is the transition probability of state:
most popular mutation —bit-flip mutation Bit-flip mutation to statej.
randomly chooses a locus and tHéps the gene at this locus, def
i.e.0 — 1 and1 — 0. A parametery,,, calledmutation rate pij = Pr{Gi(t+1) =7 | Gk(t) =i}.

was introduced to determine the probability for a gene to Bde previous section has shown how selection, OB-Scan, and

mutated. The variation of gene frequency caused by bit-fliputation affect gene frequency. From those formulae, we can

mutation is calculated in the following lemma. derive the transition probabilities of the Markov chaif (¢)}
Lemma 5: Suppose we have the gene frequepgy Given for the evolution of gene frequency in MPGA.

the mutation ratey,,, the gene frequency of the offspring Theorem 1:For a GA using selection with selection in-

mutated by bit-flip mutation has tensity Z, n-parent OB-Scan, and bit-flip mutation witp,,,
- . . the transition probabilityp;; of the Markov chain{Gy(t)}
pi’ = pi; + Ym (1 = 2pf;). corresponding to that GA is

Proof: Considering bit-flip mutation, the cases to yield
the genel at locusk are:0 — 1 (mutated) andl — 1 (not pij = B(j;m, py,)



with Proposition 1: The Markov chain{Gy(t)} for the GA
n n given in Theorem 1 is time homogeneous.
([ 1 [ D Proof: According to Theorem 1, the transition probability

- L7 i(m—i) 2
% o pi; of the Markov chain{G(¢)} is independent of time.
+ Yim (1 —2I, g [T ([gw , [g}) Therefore, the Markov chaifiGy(t)} is time homogeneous.
m “m21 ]
Proof: The state: of transmon probabilityp;; suggests . o
the gene frequency, = . Given this frequencyy, from Now we can utilize (10) to compute the state distribution and

eq. (7), Lemma 4, and Lemma 5, we can compute the gerllJ ther the mean fitness at generation

heorem 3:For the GA defined in Theorem 1, given the
gitquencypk of the offspring reproduced by the predeflnedtate distribution7(¢), we have the mean fitnesf(t) and

varianceo () in the OneMax problem at generation
Pr = Pk + ¥m (1 = 2p%)

nl rn ny n f(t L 3 gm;(t
51 ) e 31D o= S0
1+I\/‘<’" ) ([ W [§D =3 i] (m — j)m;(t

+ Im <1 - 2IL+I\/W ([g] ) [;D) Proof: Given the state dlstrlbutlon( ) at generatiort.

The gene frequencyy(t) at any locusk € {1,...,k}
In generational GAs, population is completely replaced with

the subpopulation consisting of. offspring reproduced by £ = S J p =it 1 S _
m times of selection-crossover-mutatioprocess. Since this pe(t) Z m r{Gr(t) = j} ZJWJ( ).

process is independent, the number of allele 1 holds a binomial
distribution B(m, p},). Therefore, the transition probability ~With the above equation, from Lemma 2 we obtain the mean

fitness at generation
pij = Pr{Gr(t+1) = j | Gp(t) = i}

=0 =0

m

l
= B(j;m,pt). F0) =3 i E:WU
u k=1
A Markov chain consists of a family of random variablesand the variance
therefore it has a probability distribution of states for each l R
random variable. In terms of Markov processes, this probabil- % (t) = Z (pr(t) —Pi(1) = — Zj(m —J)m;i(t).
ity distribution is calledstate distribution k=1 m= iz
Definition 12 (State Distribution): -
1) Denoted by a probability vector 7(t) =
(mo(t),...,mn(t)), the state distributionof a Markoy B- Convergence
chain {X(¢)} with state spaceS = {0,...,N} Theorem 1 gave the transition matrix of the Markov chain
represents the unconditional probabilities of state§Gy(t)} for the GA using selection with selection intensity
Precisely, fort € Z, andi € S 7, n-parent OB-Scan, and bit-flip mutation with mutation rate
def _ vm. Of particular interest to us is, if at all, theonvergence
m(t) E Pr{X(t) =i} and Y m(t)=1. of {Gr(t)} — at that time the state distribution will stay
€8 invariant once the Markov chain achieves it. Such a state distri-
2) The vector®(0) is called theinitial distribution of bution is referred to astationary distribution(or equilibrium
{X(®)}. distribution) and this chain is calledtationary [6]. In this

Next, we introduce the time homogeneity of Markov chainsection we will show that the MPGA given in Theorem 1 has
The state distribution of time homogeneous Markov chain c#ifis convergence property. Furthermore, the mean convergence
be computed by a direct way given in the following theorentfitness in the OneMax problem will be derived.

Definition 13 (Time HomogeneousXk Markov chain is  Definition 14 (Stationary Distribution)A state distribution
said to betime homogeneous its transition probabilities are 7 is said to be thetationary distributiorfor the Markov chain
independent of time. That is, for alle Z, with transition matrixP, if

pij =Pr{X(t+1)=j| X(t) =i} P = . (11)

Theorem 2 ([6, pp.57]):Suppose we have a time homoge- Lemma 6 (Ergodicity [4, pp.50])A Markov chain iser-

neous Markov chain with transition matrB. Given the initial godicif and only if

dlstr[butlon 7(0), the state distribution at generatiorcan be JtezZ, P >0,
obtained by

7(t) = 7(0)P". (10) where0 denotesero matrixi.e. all components if are zeros.



Theorem 4 (Existence of Stationarity [4, pp.50for an V. THEORETICAL RESULTS AND EXPERIMENTAL
ergodic Markov chain with state spa¢e, 1,...,m}, VALIDATION

1) the powersP! of the transition matrixP converge  This section demonstrates the theoretical results obtained
componentwise to a matrix whose all rows are equdtom the above theorems. Moreover, we conduct several ex-

If we denote a typical row byt = (7, ...,m,), then periments on the OneMax problem to verify our theoretical
we haver; > 0and)_, m; =1forallie {0,...,m}. arguments. The setting of MPGA used in our experiments
2) 7 is the unique vector such th&P = 7. is generational GA, bit-string representation, population size
This unique7 is called thestationary distributionassociated ' = 128, OB-Scan, bit-flip mutation, and 1000 generations
with the chain. for terminal condition. The size of OneMax problem is set to
To prove the existence of convergence for the Markov cha§ 100 bits, i.e.l = 100. Each experiment setting includes 100
{Gk(t)}, we need to show this chain is ergodic. independent runs.

Proposition 2: With mutation rate) < 4,,, < 1, the Markov ~In this paper we adopt linear ranking selection [14] as
chain corresponding to the GA given in Theorem 1 is ergodi@.e selection operator. The linear ranking selection, as its

Proof: Considering the case= 1, from Theorem 1 we Name tells, assigns the probability for a chromosome to be
have selected according to a linear formula based on the rank of

this chromosome. Let € {1,...,m} be the rank { for the
worst chromosome anah for the best one), the probability
with 1 i—1

Pl = % + (1 — 2p9). (12) Pr{¢; to be selectefl= el U (m*—n")

pij =0 <= B(j;m,p;) =0

m—1]|"

The above binomial distribution equals zero if and only if thevhere1l < n* < 2 andn~ = 2 — 5t are two parameters
probability pj, = 0 or 1. In case of0 < v, <1, the solutions used to control the linear relation [3]. Precisel§; and

for pj, = 0 or pj, = 1 in (12) are % are the expected probabilities for the worst and the best
chromosome to be selected, respectively. For the linear ranking
selection, Blickle and Thiele [5] derived its selection intensity.
Both solutions violate the Probability Axiom farf, that is, In the following text we will use their formula to compute the

pp <0 or pf>1.

0 < pj < 1. This implies for all, j € {0,...,m} selection intensity of linear ranking selection:
1 1
ij > 0. In=1-n)—==(n"-1)—. 13
Pij R(T})\/;r (n )ﬁ (13)
According to Theorem 4, the chaifz..(t)} is proven to be  Figure 2 compares the variation of mean fitness computed
ergodic. ® py Theorem 3 with the mean fitness averaged over 100

Theorem 5:Suppose we have the GA defined in Theorem dyperiments. First, this figure shows the theoretical and the
with 0 < v, < 1. Let {Gy(t)} be the corresponding Markov experimental results fit very well. Second, we can see the
chain at locusk € {1,...,1}. We have the stationary distri- profiles of OB-Scan with even number are very close to
bution 7 = (m1,...,m), which gives for allj € {0,...,m}  those of OB-Scan with the number—1. This confirms the

. o pairwise equivalencelaimed in Corollary 1. In addition, for
tlgrol_o_Pr{Gk(t) =Jh=m mutation ratesy,, > 0.05, OB-Scan withn > 2 achieves
~ Proof: Proposition 2 shows the Markov chalit7(¢)}  higher fitness and even faster convergence than OB-Scan with
is ergodic. According to Theorem 4, there exists the Uniqye_ o iz uniform crossover. Nevertheless, there is no winner

stationary distributiorit giving for all j € {0,...,m} for all these four mutation rates; the best number of parents
7 = lim Pr{Gy(t) = j}. is dgpendent upon the mutation rate. It is noteworth_y that the
t—oo profiles for 7- and 8-parent OB-Scan af,, = 0.2 continues

m climbing after 20 generations while others turn into steady

Corollary 2 (Mean Convergence Fitnessjor the GA de- then. This condition also occurs fd}? and 4-p§1rent OB-
fined in Theorem 1 with) < ~,, < 1, the mean and varianceScan aty,, = 0.1. Although the mutation rates in these two

of convergence fitness in the OneMax problem are cases are relatively strong to the common settipg= 7,
m they keep the MPGA using OB-Scan on advancing in fitness.
= K Zj”' These results indicate the important role of mutation in the
mi3 ! performance of MPGA using OB-Scan.

m Furthermore, we examine the solution quality for 1000 gen-

0% = LQ Zj(m — )7 grations. Figure_ 3 depicts the experimental and th_e_ theoretical
m= 20 fitness means in 1000 generatiortis= 1000); additionally
Proof: Substitute stationary distributio®i given in The- it plots the theoretical mean convergence fitnelss— oo)

orem 5 into the equations in Theorem 3; then we compledecording to Corollary 2. First, we can see that the theoretical

the proof. m and the experimental results fit very well except two cases:
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Fig. 2. Comparison of mean fitness obtained from theory (black bold lines) and experiment (color thin lines) for the MPGA using linear ranking selection
with n+ = 1.5, n-parent OB-Scan, and bit-flip mutation witj3,, = 0.01, 0.05, 0.1, and 0.2

n =34aty, = 01andn = 9,10 at v, = 0.2. In betweent = 1000 and¢ — oo. A reason for this gap is that
these two cases experimental fitness is higher than theoretmad prescribed terminal condition is not long enough for some
one. We reason this discrepancy results from violation of the test GAs to converge.

the assumptioiVar(c) < E?[o] in the approximation of the
intensity Z;. Once this assumption does not hold, eq. (5) _ ) )
tells that the consequent gene frequengywill be higher This paper proposes a Markov model to investigate the
than the value computed by (7). In the OneMax problem fonvergence of mult|-pare_nt genetic algorlthm_s. Specifically,
leads to a higher fitness, which is reflected in the discrepantl§ Probe into the mean fitness of the GA usierurrence
between theoretical and experimental fitness in those tRgS€d scanning crossoveDB-Scan) — a multi-parent gener-

cases. Second, as shown in Fig. 3, the closeness in mean fit@dgation ofuniform crossover _ _
betweenn-parent and(n — 1)-parent OB-Scan forn € 2N The theoretical results demonstrate several interesting
reconfirms thepairwise equivalenceThird, in comparison of POINts. First, the analysis reveals thairwise equivalencen

the experimental mean fithess fat= 1000, the GA using2- ©B-Scan. That is, for an even number the performance

parent OB-Scan performs bestygt = 0.01 but does worst at of n-parent OB-.Scan gquals to thf"‘_t 0 —1)-parent O_B' .
ﬁcan. Second, it manifests the critical role of mutation in

vm > 0.05. Concerning the influence of mutation, the meal )
fitness for2-parent OB-Scan decreases monotonically with tH8€ Performance of MPGAs using OB-Scan. In the OneMax

increase of mutation rate. Contrary, experimental results RfPlem. the theoretical results show that the MPGA using
t = 1000 show that putting mutation rate up may imprové“or‘? parents in OB-Scan togefther with mutation is ca_LpabIe
the GA using more than two parents in OB-Scan. Howevél! Nigher mean convergence fitness than the GA using

ast — oo, the mean fitness for OB-Scan with more than twBarént OB-Scan, viz uniform crossover. All these theoretical

parents turns to decrease with mutation rate absolutely, whigsu!ts are examined by a series of experiments on the OneMax
is the same tendency witt-parent OB-Scan. Fig. 3 further Problem. It shows that the theoretical and the experimental re-

points out that, in theory, all the GAs using OB-Scan witgults fit very well. This consistency validates the capability of
more than two parents will converge to higher fitness th&i! Proposed model. Furthermore, the superiority:qfarent

the GA using2-parent does. Yet, there exists a gap in fitned@ > 2) OB-Scan over2-parent OB-Scan in the OneMax
problem is verified theoretically as well as empirically.

VI. CONCLUSIONS
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Fig. 3. The mean fitness of the MPGA using linear ranking selection mith= 1.50, n-parent OB-Scan, and mutation with, = 0.01, 0.05, 0.1, and 0.2

The proposed model established a theory concerning the
individual as well as the integral influence of multi-parent
crossover with selection and mutation on the performance [(1)?]
MPGA. It also showed the power and the limit of OB-Scan,
and manifested the key role of mutation in this crossovetll
However, this analysis focuses only on the MPGA using OB-
Scan in the OneMax problem. An extension to other crossovers

and problem domains remains to be investigated in the futu[r1e3.
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