
On the Convergence of Multi-Parent Genetic
Algorithms

Chuan-Kang Ting
International Graduate School of Dynamic Intelligent Systems

University of Paderborn, 33100 Paderborn, Germany
ckting@upb.de

Abstract— This paper presents a Markov model for the conver-
gence of multi-parent genetic algorithms (MPGAs). The proposed
model formulates the variation of gene frequency caused by
selection, multi-parent crossover, and mutation. In addition, it
reveals the pairwise equivalence phenomenon in the number
of parents and identifies the correlation between this number
and the mean fitness in the OneMax problem. The good fit
between theoretical and experimental results demonstrate the
capability of this model. Moreover, the superiority of multi-
parent crossover in convergence fitness over 2-parent crossover
is validated theoretically as well as empirically.

I. I NTRODUCTION

Multi-parent genetic algorithms (MPGAs) are genetic al-
gorithms using multi-parent crossovers. Traditionally, genetic
algorithms (GAs) adopt two parents in crossover to reproduce
offspring. This idea is reasonable because, to the best of
our knowledge, the form of sexual reproduction on the Earth
is absolutely of two parents. Multi-parent crossovers break
through this natural limitation by allowing more than two
parents in the process of crossover. In a sense, multi-parent
genetic algorithms are said to be multi-parent generalization
of genetic algorithms.

Several multi-parent crossovers have been proposed for
MPGAs and shown their power in a variety of optimization
problems [8], [10], [21]. However, most of these crossovers
are validated empirically. Theoretical analysis on the effect of
multiple parents upon crossover or upon the whole MPGA is
lacking. Thus, the role of parent numbers in MPGAs is still
open.

This paper presents a Markov model for exploring the
influence of raising parents in MPGAs. Specifically, we inves-
tigate occurrence based scanning crossover(OB-Scan) [11]
— a multi-parent generalization ofuniform crossover[19]. In
addition, this paper focuses on the OneMax problem. Even
though the OneMax problem is relatively easy, the analysis
on it founds a basic understanding of how the GA operators
work and interact in the course of evolution. Furthermore, the
analytical models for the OneMax problems are promisingly
applicable to other problem domains.

In the procedures for analysis, first we investigate the gene
frequency affected by selection, multi-parent crossovers, and
mutation individually. Based on gene frequency, we model by
Markov chains the behavior of MPGAs. This Markov model
formulates the variation of gene frequency in the course of
MPGA’s evolution. Additionally, the mean convergence fitness

for MPGAs in the OneMax problem is derived accordingly.
These theoretical results are further verified by a series of
experiments.

The rest of this paper is organized as follows. Section 2
describes OB-Scan and Section 3 analyzes the gene frequency
affected by the MPGA operators. Next, in Section 4 we
model MPGAs with Markov chains. Theoretical results and
experimental validation are presented in Section 5. Finally,
conclusions are drawn in Section 6.

II. OCCURRENCEBASED SCANNING CROSSOVER

(OB-SCAN)

Occurrence based scanning crossover is one of thescanning
crossovers[11] — a multi-parent generalization ofuniform
crossover. In uniform crossover, the donor for each offspring
gene is randomly picked from two parents. Extended to more
than two parents, scanning crossovers choose the donor at
random or using heuristics. According to different strate-
gies, Eiben et al. [11] proposed three variations of scanning
crossovers:uniform scanning crossover(U-Scan),occurrence
based scanning crossover(OB-Scan), andfitness based scan-
ning crossover(FB-Scan). In this paper, we only discuss OB-
Scan.

Rather than random, OB-Scan determines offspring genes
depending on the occurrence of parental genes at that locus.
Specifically, it picks themajority of parental gene values as
the offspring gene for each locus. Note that in this paper OB-
Scan is defined to break ties by randomly1 choosing a binary.
Examples of2-parent OB-Scan (corresponding to uniform
crossover) and4-parent OB-Scan are given in Fig. 1. The
formal definition of the components of GAs and OB-Scan are
drawn below.

1 0 1 1 0 0 0 1Parent 1

1 0 0 1 1 1 0 1Parent 2

1 0 1 0 1 1 0 1Offspring

0 0 1 0 1 1 0 0Parent 3

1 1 0 1 0 1 1Parent 4 0

1 0 1 1 0 0 0 1Parent 1

1 1 0 1 1 1 0 1Parent 2

1 1 0 1 0 1 0 1Offspring

the majority

random selection

Fig. 1. Examples of2-parent OB-Scan (left) and4-parent OB-Scan (right)

1The original OB-Scan [11] breaks ties by directly inheriting the genes of
the first selected parent. However, random tie break conforms to generalization
of uniform crossover.



Definition 1 (Chromosome and Population):

1) A chromosome~c is encoded as a bit string, i.e.~c
def=

(c1, . . . , cl) ∈ {0, 1}l, whereci denotes ageneand l is
the chromosome length.

2) A population C is a set of chromosomes:C
def=

{~c1, . . . ,~cm}, where~ci ∈ {0, 1}l and m is the popu-
lation size.

Definition 2 (OB-Scan):Given n parents~c1, . . . ,~cn ∈ C
selected from populationC, OB-Scan reproduces the offspring
~c′ = Xob(~c1, . . . ,~cn) = (c′1, . . . , c

′
l) by

c′i =





0 if
∑n

j=1 (~cj)i < n
2

1 if
∑n

j=1 (~cj)i > n
2

rand(0, 1) otherwise

for i = 1, . . . , l,

where(~cj)i denotes theith gene of the chromosome~cj , and
rand (0, 1) is a binary random function.

III. VARIATION OF GENE FREQUENCY

Gene frequency is widely used as a quantitative measure of
genetic variation in population genetics [15]. It also suffices to
clue us in on the course of evolution in GAs. In this section we
analyze the variation of gene frequency caused by selection,
OB-Scan, and bit-flip mutation.

Definition 3 (Gene Frequency):The gene frequency
pk(α, t) is defined as the proportion of alleleα at locus
k in the population at timet. Let C = {~c1, . . . ,~cm} be a
population at timet and letCk(α) = {~c ∈ C | ck = α} be
the subset in which chromosomes possess alleleα at locusk.
The gene frequency

pk(α, t) def=
|Ck(α)|
|C| ,

where|C| and |Ck(α)| represent the cardinality of setC and
Ck(α), respectively.
In GAs chromosomes are represented as binary strings. Thus
there exist two gene frequenciespk(1, t) and pk(0, t) with
pk(1, t) = 1 − pk(0, t) for every locusk and time t. For
simplicity, we refer to the gene frequencypk(1, t) as pk(t)
and refer topk(0, t) as (1 − pk(t)). Incidentally, the symbol
pk(t) is referred to aspk while the indication of timet is not
in effect.

Remark 1:Let ck be the kth gene of chromosome~c. In
GAs, for a populationC at time t

pk(t) def= E[ck] =
1
m

∑

c∈C

ck, (1)

σ2
k(t) def= Var(ck) = pk(1− pk). (2)

Definition 4 (Variation of Gene Frequency in GAs):Let s,
x, m, and r denote the selection, crossover, mutation, and
replacement (survivor), respectively. The process of GA with
respect to gene frequency can be expressed as

pk(t) s−→ ps
k(t) x−→ px

k(t) m−−→ pm
k (t) r−→ pk(t + 1). (3)

The successive sections will investigate the influence of se-
lection, multi-parent crossovers, and mutation on the gene

frequency. In the analysis we will make use of the well-known
binomial distribution. The probability mass function (p.m.f) of
binomial distributionB(n, p) is

B(x; n, p) =
(

n

x

)
px(1− p)n−x.

A. Variation by Selection

This section examines how selection affects gene frequency.
Recall the fact that most of the selection operators in GAs
depend on fitness — a phenotypic property of chromosomes.
Conversely, gene frequency concerns the genotypes of chro-
mosomes. The mapping from genotypes to phenotype is
problem-dependent in essence. In this paper we focus on
the OneMax problem. The fitness of the OneMax problem
provides a direct way to bridge this gap between phenotype
and genotype.

Definition 5 (The OneMax Problem):The OneMax prob-
lem is to find the binary string~c = (c1, . . . , cl) ∈ {0, 1}l,
which maximizes the following functionf : {0, 1}l →
{0, 1, . . . , l}:

f(~c) =
l∑

k=1

ci.

Lemma 1: In GAs, the covariance of the genes at any two
loci u, v ∈ {1, . . . , l} has

Cov(cu, cv) = 0.
Proof: Let Ck be the subset in which chromosomes

possess alleleα at locusk. Since

E[cucv] =
1

m2
|Cu| |Cv| = pupv,

The covariance

Cov(cu, cv) = E[cucv]− E[cu]E[cv] = pupv − pupv = 0.

Next, we give a definition of mean fitness, which will be
extensively discussed in this paper. The relation between mean
fitness and gene frequency will be presented afterwards.

Definition 6 (Mean Fitness):Themean fitnessof a popula-
tion C is defined as

f̄ =
1
|C|

∑

~c∈C

f(~c).

Lemma 2:Let pk be the gene frequency at locusk. In the
OneMax problem we have the mean̄f and varianceσ2

F of
fitness:

f̄ =
l∑

k=1

pk

σ2
F =

l∑

k=1

σ2
k =

l∑

k=1

pk(1− pk)

Proof: The fitness mean can be simply derived by (1):

f̄ = E[f ] = E

[
l∑

k=1

ck

]
=

l∑

k=1

E [ck] =
l∑

k=1

pk.



Using Lemma 1, we have the fitness variance

σ2
F = Var(f) = Var

(
l∑

k=1

ck

)

=
l∑

k=1

Var(ck) +
∑

u 6=v

Cov(cu, cv) =
l∑

k=1

σ2
k.

To compute the variation of gene frequency caused by se-
lection, here we introduce the concept ofselection intensity,
which originates from quantitative genetic [12] but now is
widely used in evolutionary computation community as a
quantitative measure of selection pressure [5], [16]. The defini-
tions of selection differential and selection intensity are given
as follows.

Definition 7 (Selection Differential):Let f̄(t) and f̄s(t) be
the mean fitness of the population and that of selected parents
at generationt, respectively. Theselection differentialS(t) is
defined as

S(t) = f̄s(t)− f̄(t).
Definition 8 (Selection Intensity):Let S(t) be the selection

differential andσF (t) be the standard deviation of fitness in
a population at generationt. Theselection intensityis defined
as

I(t) =
S(t)
σF (t)

=
f̄s(t)− f̄(t)

σF (t)
. (4)

In this paper we additionally define aselection intensity for
gene frequencyto measure the effect of selection upon gene
frequency.

Definition 9 (Selection Intensity for Gene Frequency):
The selection intensityIp

k for gene frequency at locus
k ∈ {1, . . . , l} is defined as

Ip
k

def=
ps

k − pk

σk
.

Lemma 3: In the OneMax problem, the expected selection
intensity for gene frequency

E [Ip] =
I√
l

√
1 +

Var(σ)
E2[σ]

. (5)

Proof: The definition of selection intensity for gene
frequency tells

ps
k − pk = Ip

kσk.

SinceIp
k andσk are independent, averaging all loci gives

E[ps]− E[p] = E [Ip] E[σ]. (6)

According to Lemma 2 and eq. (4), the above equation can
be rewritten as

E [Ip] =
E[ps]− E[p]

E[σ]
=

f̄s − f̄

lE[σ]
=
IσF

lE[σ]

=
I
√∑l

k=1 σ2
k

lE[σ]
=
I
√

lE[σ2]
lE[σ]

=
I√
l

√
E[σ2]
E2[σ]

.

The varianceVar(σ) = E[σ2]− E2[σ]. Thus,

E [Ip] =
I√
l

√
E2[σ] + Var(σ)

E2[σ]
=

I√
l

√
1 +

Var(σ)
E2[σ]

.

Remark 2:As Var(σ) ¿ E2[σ], the expected selection
intensity for gene frequency becomes

E [Ip] ≈ I√
l

.

In this paper we utilize the above expectation as the selection
intensity for gene frequency at any locusk. Consequently, the
variation of gene frequency caused by selection approximates
to

ps
k ≈ pk +

( I√
l

)
σk. (7)

A practical advantage of (7) is its correlation to selection
intensity I. Accordingly, we can utilize the existing analyt-
ical results on the selection intensityI of diverse selection
operators in GAs, e.g. [5]. Note that the selection intensity for
gene frequency in (7) is based on the assumptionVar(σ) ¿
E2[σ]. Even though this assumption does not necessarily hold
in the course of evolution, we will empirically show this
approximation can work well in Section 5.

B. Variation by OB-Scan

Here we analyze the gene frequency affected by OB-Scan.
Since OB-Scan is a multi-parent generalization of uniform
crossover, the analyses and results presented here are appli-
cable to uniform crossover as well.
Before conducting the analysis of OB-Scan, we introduce the
incomplete beta function for simplifying the expression of
equations .

Definition 10 (Incomplete Beta Function):The incomplete
beta functionis defined as

Ix(a, b) def=
1

Beta(a, b)

∫ x

0

ta−1(1− t)b−1dt,

wherea, b > 0 andBeta(a, b) is thebeta function.
The incomplete beta function holds the following properties:

1) (26.5.24 [1]) For binomial distributionB(n, p),
n∑

i=a

B(i; n, p) = Ip(a, n− a + 1). (8)

2) (26.5.16 [1])

Ix(a, b) =
1

a · Beta(a, b)
xa(1−x)b + Ix(a+1, b). (9)

Now we embark on the analysis of OB-Scan’s influence on
gene frequency.

Lemma 4:Suppose we have the gene frequencyps
k of the

selected parents. The gene frequency, denoted bypob
k , of the

offspring reproduced byn-parent OB-ScanXob with n ∈ N>1

has
pob

k = Ips
k
(a, a),

whereIp denotes the incomplete beta function anda =
⌈

n
2

⌉
.

Proof: Let X be the number of parents possessing the
allele 1 at locusk amongn selected parents. Since the process



of random selection is independent, it is a Bernoulli process.
Performing this selectionn times, the numberX holds a
binomial distribution with p.m.f.

Pr(X = x) = B(x;n, ps
k) =

(
n

x

)
(ps

k)x (1− ps
k)n−x

.

Let D1 denote the event that OB-Scan assigns the allele1
to the offspring locusk. According to Definition 2, OB-Scan
yields

Pr(D1 | X = x) =





1 if x > n/2,

0 if x < n/2,
1
2 if x = n/2.

For OB-Scan with odd number of parents (n = 2a − 1 with
a ∈ N>1), from (8) we have

pob
k = Pr(D1) =

n∑
x=0

Pr(D1 | X = x) · Pr(X = x)

=
2a−1∑
x=a

B(x; 2a− 1, ps
k) = Ips

k
(a, a).

Similarly, for OB-Scan with even number of parents (n = 2a
with a ∈ N), we have

pob
k =

2a∑
x=a+1

B(x; 2a, ps
k) +

1
2
B(a; 2a, ps

k)

= Ipk
(a, a)− 1

aBeta(a, a)
(ps

k)a (1− ps
k)a

+
1
2

(
2a

a

)
(ps

k)a (1− ps
k)a (from (9))

= Ips
k
(a, a) +

[
− Γ(2a)

aΓ(a)Γ(a)
+

1
2

(2a)!
a!a!

]
(ps

k)a (1− ps
k)a

= Ips
k
(a, a).

Corollary 1 (Pairwise Equivalence):Let pob(n)
k be the gene

frequencypob
k corresponding ton-parent OB-Scan. Forn ∈

2N andn ≥ 4,
p
ob(n)
k = p

ob(n−1)
k .

Proof: Trivial (since
⌈

n
2

⌉
=

⌈
n−1

2

⌉
in Lemma 4).

C. Variation by Mutation

In this work, the analysis of mutation focuses on the
most popular mutation —bit-flip mutation. Bit-flip mutation
randomly chooses a locus and thenflips the gene at this locus,
i.e. 0 → 1 and1 → 0. A parameterγm, calledmutation rate,
was introduced to determine the probability for a gene to be
mutated. The variation of gene frequency caused by bit-flip
mutation is calculated in the following lemma.

Lemma 5:Suppose we have the gene frequencypx
k. Given

the mutation rateγm, the gene frequency of the offspring
mutated by bit-flip mutation has

pm
k = px

k + γm(1− 2px
k).

Proof: Considering bit-flip mutation, the cases to yield
the gene1 at locusk are: 0 → 1 (mutated) and1 → 1 (not

mutated). Letck be the gene at locusk before mutation and
c′k be the gene after mutation. The gene frequency

pm
k = Pr{c′k = 1 | ck = 0}Pr{ck = 0}

+ Pr{c′k = 1 | ck = 1}Pr{ck = 1}
= γm(1− px

k) + (1− γm)px
k

= px
k + γm(1− 2px

k).

IV. M ODELING WITH MARKOV CHAINS

Markov chains have been used to model the exact behavior
of GAs [2], [13], [20] and to analyze the convergence of GAs
[7], [9], [17], [18]. In this paper, we use Markov chains to
model the evolution of gene frequency. Furthermore, the mean
fitness in the OneMax problem is derived from this Markov
model.

A. The Model for Gene Frequency

In light of gene frequency, GA can be viewed as a stochastic
process manipulating the number of allele 1 (or 0) in the
population: Let random variablesGk(t) ∈ {0, 1, . . . , m} be
the number of allele 1 at locusk at generationt. The process
of GAs on gene frequency can be represented as{Gk(t) :
t ∈ Z∗}. Since for everyi0, i1, . . . , it+1 ∈ {0, 1, . . . , m} the
process{Gk(t)} satisfies

Pr{Gk(t + 1) = it+1 | Gk(t) = it, . . . , Gk(0) = i0}
=Pr{Gk(t + 1) = it+1 | Gk(t) = it},

the process{Gk(t)} is a Markov chain. The formal definition
of the Markov chain for gene frequency is given as follows.

Definition 11 (Markov Chain for Gene Frequency):In the
Markov chain {Gk(t)} for gene frequency at locusk ∈
{1, . . . , l} in GAs,

1) thestateis defined as the number of allele1 at locusk in
the population; thereby the state space is{0, 1, . . . , m}.
A statei in {Gk(t)} gives the gene frequency

pk =
i

m
.

2) The transition matrix of {Gk(t)} is defined asP def=
(ρij), whereρij is the transition probabilityof statei
to statej.

ρij
def= Pr{Gk(t + 1) = j | Gk(t) = i}.

The previous section has shown how selection, OB-Scan, and
mutation affect gene frequency. From those formulae, we can
derive the transition probabilities of the Markov chain{Gk(t)}
for the evolution of gene frequency in MPGA.

Theorem 1:For a GA using selection with selection in-
tensity I, n-parent OB-Scan, and bit-flip mutation withγm,
the transition probabilityρij of the Markov chain{Gk(t)}
corresponding to that GA is

ρij = B(j;m, p′k)



with

p′k = I
i

m +I
√

i(m−i)
m2l

(⌈n

2

⌉
,
⌈n

2

⌉)

+ γm

(
1− 2I

i
m +I

√
i(m−i)

m2l

(⌈n

2

⌉
,
⌈n

2

⌉))

Proof: The statei of transition probabilityρij suggests
the gene frequencypk = i

m . Given this frequencypk, from
eq. (7), Lemma 4, and Lemma 5, we can compute the gene
frequencyp′k of the offspring reproduced by the predefined
GA:

p′k = px
k + γm (1− 2px

k)

= Ips
k

(⌈n

2

⌉
,
⌈n

2

⌉)
+ γm

(
1− 2Ips

k

(⌈n

2

⌉
,
⌈n

2

⌉))

= I
i

m +I
√

i(m−i)
m2l

(⌈n

2

⌉
,
⌈n

2

⌉)

+ γm

(
1− 2I

i
m +I

√
i(m−i)

m2l

(⌈n

2

⌉
,
⌈n

2

⌉))

In generational GAs, population is completely replaced with
the subpopulation consisting ofm offspring reproduced by
m times of selection-crossover-mutationprocess. Since this
process is independent, the number of allele 1 holds a binomial
distributionB(m, p′k). Therefore, the transition probability

ρij = Pr{Gk(t + 1) = j | Gk(t) = i}
= B(j; m, p′k).

A Markov chain consists of a family of random variables;
therefore it has a probability distribution of states for each
random variable. In terms of Markov processes, this probabil-
ity distribution is calledstate distribution.

Definition 12 (State Distribution):

1) Denoted by a probability vector ~π(t) =
(π0(t), . . . , πN (t)), the state distributionof a Markov
chain {X(t)} with state spaceS = {0, . . . , N}
represents the unconditional probabilities of states.
Precisely, fort ∈ Z∗ and i ∈ S

πi(t)
def= Pr{X(t) = i} and

∑

i∈S

πi(t) = 1.

2) The vector~π(0) is called the initial distribution of
{X(t)}.

Next, we introduce the time homogeneity of Markov chains.
The state distribution of time homogeneous Markov chain can
be computed by a direct way given in the following theorem.

Definition 13 (Time Homogeneous):A Markov chain is
said to betime homogeneousif its transition probabilities are
independent of time. That is, for allt ∈ Z∗

ρij = Pr{X(t + 1) = j | X(t) = i}.
Theorem 2 ([6, pp.57]):Suppose we have a time homoge-

neous Markov chain with transition matrixP. Given the initial
distribution~π(0), the state distribution at generationt can be
obtained by

~π(t) = ~π(0)Pt. (10)

Proposition 1: The Markov chain{Gk(t)} for the GA
given in Theorem 1 is time homogeneous.

Proof: According to Theorem 1, the transition probability
ρij of the Markov chain{Gk(t)} is independent of timet.
Therefore, the Markov chain{Gk(t)} is time homogeneous.

Now we can utilize (10) to compute the state distribution and
further the mean fitness at generationt.

Theorem 3:For the GA defined in Theorem 1, given the
state distribution~π(t), we have the mean fitness̄f(t) and
varianceσF (t) in the OneMax problem at generationt:

f̄(t) =
l

m

m∑

j=0

jπj(t)

σ2
F (t) =

l

m2

m∑

j=0

j(m− j)πj(t)

Proof: Given the state distribution~π(t) at generationt.
The gene frequencypk(t) at any locusk ∈ {1, . . . , k}

pk(t) =
m∑

j=0

(
j

m

)
Pr{Gk(t) = j} =

1
m

m∑

j=0

jπj(t).

With the above equation, from Lemma 2 we obtain the mean
fitness at generationt

f̄(t) =
l∑

k=1

pk(t) =
l

m

m∑

j=0

jπj(t),

and the variance

σ2
F (t) =

l∑

k=1

(
pk(t)− p2

k(t)
)

=
l

m2

m∑

j=0

j(m− j)πj(t).

B. Convergence

Theorem 1 gave the transition matrix of the Markov chain
{Gk(t)} for the GA using selection with selection intensity
I, n-parent OB-Scan, and bit-flip mutation with mutation rate
γm. Of particular interest to us is, if at all, theconvergence
of {Gk(t)} — at that time the state distribution will stay
invariant once the Markov chain achieves it. Such a state distri-
bution is referred to asstationary distribution(or equilibrium
distribution) and this chain is calledstationary [6]. In this
section we will show that the MPGA given in Theorem 1 has
this convergence property. Furthermore, the mean convergence
fitness in the OneMax problem will be derived.

Definition 14 (Stationary Distribution):A state distribution
~π is said to be thestationary distributionfor the Markov chain
with transition matrixP, if

~πP = ~π. (11)
Lemma 6 (Ergodicity [4, pp.50]):A Markov chain is er-

godic if and only if

∃t ∈ Z+ : Pt > 0,

where0 denoteszero matrix, i.e. all components in0 are zeros.



Theorem 4 (Existence of Stationarity [4, pp.50]):For an
ergodic Markov chain with state space{0, 1, . . . ,m},

1) the powersPt of the transition matrixP converge
componentwise to a matrix whose all rows are equal.
If we denote a typical row by~π = (π0, . . . , πm), then
we haveπi > 0 and

∑
i πi = 1 for all i ∈ {0, . . . , m}.

2) ~π is the unique vector such that~πP = ~π.

This unique~π is called thestationary distributionassociated
with the chain.
To prove the existence of convergence for the Markov chain
{Gk(t)}, we need to show this chain is ergodic.

Proposition 2: With mutation rate0 < γm < 1, the Markov
chain corresponding to the GA given in Theorem 1 is ergodic.

Proof: Considering the caset = 1, from Theorem 1 we
have

ρij = 0 ⇐⇒ B(j;m, p′k) = 0

with
p′k = px

k + γm(1− 2px
k). (12)

The above binomial distribution equals zero if and only if the
probability p′k = 0 or 1. In case of0 < γm < 1, the solutions
for p′k = 0 or p′k = 1 in (12) are

px
k < 0 or px

k > 1.

Both solutions violate the Probability Axiom forpx
k, that is,

0 ≤ px
k ≤ 1. This implies for alli, j ∈ {0, . . . , m}

ρij > 0.

According to Theorem 4, the chain{Gk(t)} is proven to be
ergodic.

Theorem 5:Suppose we have the GA defined in Theorem 1
with 0 < γm < 1. Let {Gk(t)} be the corresponding Markov
chain at locusk ∈ {1, . . . , l}. We have the stationary distri-
bution ~π = (π1, . . . , πl), which gives for allj ∈ {0, . . . ,m}

lim
t→∞

Pr{Gk(t) = j} = πj .

Proof: Proposition 2 shows the Markov chain{Gk(t)}
is ergodic. According to Theorem 4, there exists the unique
stationary distribution~π giving for all j ∈ {0, . . . ,m}

πj = lim
t→∞

Pr{Gk(t) = j}.

Corollary 2 (Mean Convergence Fitness):For the GA de-
fined in Theorem 1 with0 < γm < 1, the mean and variance
of convergence fitness in the OneMax problem are

f̄∗ =
l

m

m∑

j=0

jπj

σ2∗
F =

l

m2

m∑

j=0

j(m− j)πj

Proof: Substitute stationary distribution~π given in The-
orem 5 into the equations in Theorem 3; then we complete
the proof.

V. THEORETICAL RESULTS AND EXPERIMENTAL

VALIDATION

This section demonstrates the theoretical results obtained
from the above theorems. Moreover, we conduct several ex-
periments on the OneMax problem to verify our theoretical
arguments. The setting of MPGA used in our experiments
is generational GA, bit-string representation, population size
m = 128, OB-Scan, bit-flip mutation, and 1000 generations
for terminal condition. The size of OneMax problem is set to
be100 bits, i.e.l = 100. Each experiment setting includes 100
independent runs.

In this paper we adopt linear ranking selection [14] as
the selection operator. The linear ranking selection, as its
name tells, assigns the probability for a chromosome to be
selected according to a linear formula based on the rank of
this chromosome. Leti ∈ {1, . . . ,m} be the rank (1 for the
worst chromosome andm for the best one), the probability

Pr{~ci to be selected} =
1
m

[
η− + (η+ − η−)

i− 1
m− 1

]
,

where 1 ≤ η+ ≤ 2 and η− = 2 − η+ are two parameters
used to control the linear relation [3]. Precisely,η−

m and
η+

m are the expected probabilities for the worst and the best
chromosome to be selected, respectively. For the linear ranking
selection, Blickle and Thiele [5] derived its selection intensity.
In the following text we will use their formula to compute the
selection intensity of linear ranking selection:

IR = (1− η−)
1√
π

= (η+ − 1)
1√
π

. (13)

Figure 2 compares the variation of mean fitness computed
by Theorem 3 with the mean fitness averaged over 100
experiments. First, this figure shows the theoretical and the
experimental results fit very well. Second, we can see the
profiles of OB-Scan with even numbern are very close to
those of OB-Scan with the numbern−1. This confirms the
pairwise equivalenceclaimed in Corollary 1. In addition, for
mutation ratesγm ≥ 0.05, OB-Scan withn > 2 achieves
higher fitness and even faster convergence than OB-Scan with
n = 2, viz uniform crossover. Nevertheless, there is no winner
for all these four mutation rates; the best number of parents
is dependent upon the mutation rate. It is noteworthy that the
profiles for 7- and 8-parent OB-Scan atγm = 0.2 continues
climbing after 20 generations while others turn into steady
then. This condition also occurs for3- and 4-parent OB-
Scan atγm = 0.1. Although the mutation rates in these two
cases are relatively strong to the common settingγm = 1

l ,
they keep the MPGA using OB-Scan on advancing in fitness.
These results indicate the important role of mutation in the
performance of MPGA using OB-Scan.

Furthermore, we examine the solution quality for 1000 gen-
erations. Figure 3 depicts the experimental and the theoretical
fitness means in 1000 generations (t = 1000); additionally
it plots the theoretical mean convergence fitness (t → ∞)
according to Corollary 2. First, we can see that the theoretical
and the experimental results fit very well except two cases:
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Fig. 2. Comparison of mean fitness obtained from theory (black bold lines) and experiment (color thin lines) for the MPGA using linear ranking selection
with η+ = 1.5, n-parent OB-Scan, and bit-flip mutation withγm = 0.01, 0.05, 0.1, and 0.2

n = 3, 4 at γm = 0.1 and n = 9, 10 at γm = 0.2. In
these two cases experimental fitness is higher than theoretical
one. We reason this discrepancy results from violation of
the assumptionVar(σ)¿ E2[σ] in the approximation of the
intensity Ip

k . Once this assumption does not hold, eq. (5)
tells that the consequent gene frequencyps

k will be higher
than the value computed by (7). In the OneMax problem it
leads to a higher fitness, which is reflected in the discrepancy
between theoretical and experimental fitness in those two
cases. Second, as shown in Fig. 3, the closeness in mean fitness
betweenn-parent and(n−1)-parent OB-Scan forn ∈ 2N
reconfirms thepairwise equivalence. Third, in comparison of
the experimental mean fitness att = 1000, the GA using2-
parent OB-Scan performs best atγm = 0.01 but does worst at
γm ≥ 0.05. Concerning the influence of mutation, the mean
fitness for2-parent OB-Scan decreases monotonically with the
increase of mutation rate. Contrary, experimental results at
t = 1000 show that putting mutation rate up may improve
the GA using more than two parents in OB-Scan. However,
as t →∞, the mean fitness for OB-Scan with more than two
parents turns to decrease with mutation rate absolutely, which
is the same tendency with2-parent OB-Scan. Fig. 3 further
points out that, in theory, all the GAs using OB-Scan with
more than two parents will converge to higher fitness than
the GA using2-parent does. Yet, there exists a gap in fitness

betweent = 1000 and t → ∞. A reason for this gap is that
our prescribed terminal condition is not long enough for some
of the test GAs to converge.

VI. CONCLUSIONS

This paper proposes a Markov model to investigate the
convergence of multi-parent genetic algorithms. Specifically,
we probe into the mean fitness of the GA usingoccurrence
based scanning crossover(OB-Scan) — a multi-parent gener-
alization ofuniform crossover.

The theoretical results demonstrate several interesting
points. First, the analysis reveals thepairwise equivalencein
OB-Scan. That is, for an even numbern, the performance
of n-parent OB-Scan equals to that of(n− 1)-parent OB-
Scan. Second, it manifests the critical role of mutation in
the performance of MPGAs using OB-Scan. In the OneMax
problem, the theoretical results show that the MPGA using
more parents in OB-Scan together with mutation is capable
of higher mean convergence fitness than the GA using2-
parent OB-Scan, viz uniform crossover. All these theoretical
results are examined by a series of experiments on the OneMax
problem. It shows that the theoretical and the experimental re-
sults fit very well. This consistency validates the capability of
our proposed model. Furthermore, the superiority ofn-parent
(n > 2) OB-Scan over2-parent OB-Scan in the OneMax
problem is verified theoretically as well as empirically.
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Fig. 3. The mean fitness of the MPGA using linear ranking selection withη+ = 1.50, n-parent OB-Scan, and mutation withγm = 0.01, 0.05, 0.1, and 0.2

The proposed model established a theory concerning the
individual as well as the integral influence of multi-parent
crossover with selection and mutation on the performance of
MPGA. It also showed the power and the limit of OB-Scan,
and manifested the key role of mutation in this crossover.
However, this analysis focuses only on the MPGA using OB-
Scan in the OneMax problem. An extension to other crossovers
and problem domains remains to be investigated in the future.
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