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Abstract. Genetic Algorithms (GAs) are well-known heuristic algorithms and
have been widely applied to solve combinatorial problems. Edge recombination
is one of the famous crossovers designed for GAs to solve combinatorial prob-
lems. The essence of edge recombination is to achieve maximal inheritance
from parental edges. This paper presents two strategies to improve edge recom-
bination. First, we encourage alternation of parents in edge inheritance. Second,
a greedy method is used to handle the failures occurred in edge recombination.
A modified edge recombination, called edge recombination with tabu (Edge-T),
is proposed according to these two strategies. The traveling salesman problem
is used as a benchmark to demonstrate the effectiveness of the proposed
method. Experimental results indicate that Edge-T can achieve better perform-
ance than the conventional edge recombination Edge-3 in terms of both solution
quality and convergence speed.

1 Introduction

Genetic algorithms (GAs) are well-known heuristic algorithms based on the imitation
of natural evolution [Hol75]. Their effectiveness in search and optimization problems
has been extensively validated. Crossover is one of the most salient features of GAs.
It simulates the creation of offspring in the natural world by exchanging and recom-
bining genetic information from two selected parents. This operator is believed to be
capable of exploring the problem space effectively. However, in order to enhance
GAs’ performance, several crossovers have been proposed to deal with specific
problems. For example, in terms of combinatorial problems, there exist partially
mapped crossover (PMX) [GL85], order crossover (OX) [Dav85], and cycle cross-
over (CX) [OSH87].

The traveling salesman problem (TSP) is a classic combinatorial problem. Given n
cities, the objective of TSP is to find the shortest tour that visits all cities exactly once.
This problem has been proven NP-complete; in other words, under the general as-
sumption NPP ≠ , there is no exact algorithm which can solve the problem in poly-
nomial time. Heuristic algorithms, therefore, are commonly used to deal with this
problem.

To solve the TSP with a GA, the crossovers used for order based representations,
such as PMX, OX, and CX, are traditionally adopted. The character of these cross
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overs is to permute and recombine the order information of parental chromosomes.
The adjacency information, however, is crucial to TSP but is not utilized in these op-
erators. Whitley et al. [WSF89] proposed a series of crossovers, called edge recombi-
nation, to overcome this drawback. Edge recombination utilizes an edge table to rec-
ord the adjacency of parental cities, and then builds the filial tour with reference to
this edge table and specific heuristics. The method (Edge-1) and its modifications
(Edge-2,3,4,5,6) have shown their superiority over PMX, OX, and CX in TSP [Sta91,
NYY00].

Generally, edge recombination attempts to inherit as many parental edges as possi-
ble. Its ability to preserve parental edges has been validated through its higher corre-
lation coefficient between the fitness of parents and offspring [MdWS91]. This ability
is believed useful to exploit the fitness landscape and is capable of better perform-
ance. However, another adjacency-based crossover, edge assembly crossover (EAX)
[NK97, NK99] uses different strategies from such a “maximal inheritance” tactic.
First, an AB-cycle is defined as a cycle formed by alternating parental sequences. Sec-
ond, a so-called E-set collects a subset of AB-cycles by two methods: random selec-
tion and heuristic selection. The intermediate sub-tours are then established on the ba-
sis of the E-set. Finally, EAX uses a greedy manner to merge these sub-tours. This
procedure attempts to connect two sub-tours with the edges which can achieve the
minimal total distance of these two sub-tours. Experimental results show that EAX
achieves a breakthrough in the performance of crossover in TSP [Wat98]

Considering EAX’s success we propose the following two strategies to enhance
edge recombination.

1. Inheritance of edges from alternate parents.
2. Greedy manner in connecting sub-tours.

Instead of maximal inheritance, these two strategies result in more diverse inheri-
tance. The alternation of parental inheritance can not only preserve parental informa-
tion but also utilize this information in a more explorative way. The original edge re-
combination attempts to generate highly correlated offspring with their parents. This
highly-correlated inheritance, nevertheless, poses a risk of the biased inheritance,
which inherits edges merely from one parent and consequently renders the population
similar. An alternation of parents can prevent this drawback and maintain population
diversity. In addition, the concept of maximal inheritance also affects the failure
treatment in edge recombination. The original edge recombination and its modifica-
tions all try to recover and extend the tour-building process when failure occurs.
However, these deadlock tour segments can be viewed as sub-tours. Our second strat-
egy, therefore, does not prevent failures from introducing foreign edges as the original
edge recombination do. Instead, our proposed greedy manner attempts to introduce an
advantageous foreign edge to connect these sub-tours.

In this paper, a modified edge recombination, called edge recombination with tabu
(Edge-T), is proposed to validate the effectiveness of these two strategies in edge re-
combination. First, a tabu list [GK97] is applied to Edge-T in order to restrain inher-
iting the successive edge from the same parent. Such a restriction is expected to in-
crease the alternate level of parents. Second, Edge-T adopts a greedy method rather
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than a recovery manner to handle the failure condition. Several TSP instances, rang-
ing from 51 to 442 cities, are used as benchmarks to evaluate the performance of
Edge-T.

The rest of this paper is organized as follows. Section 2 gives a brief description of
edge recombination. Next, Section 3 describes the algorithm Edge-T and its strategies
in a more detail. Section 4 presents experimental results including the influence of
Edge-T’s components and performance comparisons. Finally, conclusions are drawn
in Section 5.

2 Edge Recombination

Edge recombination is a crossover which focuses on the adjacency relation. As illus-
trated in Figure 1, edge recombination uses an edge table to record parental edges,
and then limits the generation of offspring to the edges contained in this table. In
other words, the candidates of offspring edges come from parental edges principally.

With reference to the edge table, edge recombination builds a tour according to
specific heuristics. In the original edge recombination (Edge-1) [WSF89], the build-
ing process intends to select the city with the fewest links, namely, the most isolating
city. Edge-1 initially generates the edge table by scanning both parents. Afterwards,
Edge-1 begins the process of building the filial tour. (1) Select one of the first parental
cities as the starting city. (2) Select its next city from the remaining adjacent cities
(links) of the current city. We call these links candidates for the next city. According
to the heuristic’s “priority of isolating cites”, the candidates with the smallest number
of links is chosen. (3) Repeat (2) until the complete tour is built.

Fig. 1. Edge table of edge recombination

Several modifications based on different heuristics have been proposed to improve the
original edge recombination. Edge-2 [Sta91], for instance, pays more attention to
common edges of both parents than the isolating cites. It marks the common link with
a negative (-) sign to indicate its priority over other odd links. Experimental results
demonstrate this heuristic can improve the original edge recombination. In addition to
the process of building a tour, some modifications focus on handling the failure con-
dition. In edge recombination a failure occurs when the crossover can not find any
possible candidate for the next city. The original edge recombination solves this
deadlock by randomly choosing the next city from the unselected cities. In this case,
the crossover is forced to introduce a foreign edge, which means an edge that does not
exist in parental edges. Such a foreign edge is believed to be harmful to the perform-
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ance of crossover. In order to reduce the number of failures, Edge-3 [MW92] reverses
the built tour segment when a failure occurs, and then continues the building process
from the live end instead of the dead end. If another failure occurs thereafter, the algo-
rithm will randomly choose the next city as Edge-1 does because there is no live end
for this built tour segment. This randomly chosen city subsequently acts as a begin-
ning of a new tour segment and is viewed as another live end. Edge-4 [DW94], none-
theless, only reverses a partial segment rather than the whole built segment. Further-
more, Edge-5 [NYY00] employs another heuristic of choosing the next city to limit
the number of failures. Edge-5 intends to select the edges from the same parent during
building tour. The results show this approach can significantly reduce the failure rate
at the mature stage. Edge-6 [NYY00] further deals with the failures in Edge-5. When
a failure occurs, Edge-6 examines if there is an edge connecting two ends of the built
tour segment. If it holds, Edge-6 will seek a city along the built tour to link an unse-
lected city. Then Edge-6 breaks the connection of the sought city and its successive
city, and re-connects it with the unselected city. Experimental results indicate Edge-5
and Edge-6 can decrease the failure rate and obtain better performance.

3 Edge Recombination with Tabu (Edge-T)

The edge recombination with tabu (Edge-T) is proposed to validate our two strategies
in enhancing edge recombination. First, we argue that the alternation of parents in in-
heritance is capable of better performance. To meet this purpose, Edge-T incorporates
a tabu list to prevent inheriting the successive edge from the same parent. Second, we
consider a greedy manner in handling failures can improve the performance. Here a
built tour segment that encounters a failure is viewed as a sub-tour. Edge-T attempts
to introduce the shortest foreign edge to connect these sub-tours.

To incorporate the first strategies with edge recombination, Edge-T uses a priority
function to sum up the weights of common edges and isolating level. Furthermore, the
factor of tabu restriction is added to this priority function as a penalty. The function
used to evaluate the priority of an edge from the current city i  to its link j  is thus
defined:

ijjijij TlmP −−+= )4(2 (1)

where ijm  denotes the number of common edges, jl  denotes the number of remain-
ing links for city j , and ijT  is the number of tabu occurrences. Edge-T always
chooses the link with the greatest priority value. The first term of the priority function
indicates the portion of common edges. In the priority function only the value ijm
greater than 1 will be taken into calculation; otherwise this value is set to 0. The sec-
ond term expresses the portion of isolating level. The number of remaining links jl
ranges from 0 to 4 and is inversely proportional to the isolating level. To meet the
maximization of the priority function, we subtract the value jl  from its maximal value
4. The last term, ijT , accounts for the penalty factor. A tabu list [GK97] is applied to
record the prohibitive parents for inheritance. In addition, a corresponding ancestry
list is necessarily added to each link to trace the parents where the edge inherits from.
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As Figure 2 shows, for example, in terms of city A, the link to city B comes from par-
ent 1; the link to city J is a common edge of parent 1 and parent 2. When an edge is
selected from the edge table, the ancestry list of this edge turns into the tabu list,
which inhibits the building process to choose the next edge from the same parent.

Fig. 2. The extended edge table and tabu list of Edge-T

Totally speaking, these three portions – common edges, isolating level, and tabu re-
striction – constitute the decision criteria for building tours. Following the previous
example, if the offspring tour starts with city A, it will have three available links to
consider. The tabu list is empty at this time because there is no previous edge. Figure
3(a) shows the priority of its candidates B, J, H is 1, 6, and 1 respectively. Due to the
greatest priority value, city J is picked and then its ancestry list turns into the tabu list
as shown in Figure 3(b). This “evaluate-and-choose” process will continue until the
offspring tour is finished or a failure occurs.

Fig. 3. Example of 10-city tour building in Edge-T

Failures, nevertheless, occur probably in Edge-T as well as in edge recombination.
Unlike edge recombination’s preventive way, Edge-T adopt a greedy manner to intro-
duce foreign but advantageous edges instead. When a failure occurs, namely no avail-
able edge to choose, the built tour segment can be viewed as a sub-tour. During the
building process, there may be some of such sub-tours. In this case, Edge-T will seek
the shortest link between two sub-tours. Specifically, Edge-T will search the unse-
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lected cities for the shortest link from the end of currently built segment. The com-
plexity of this search process is )(nO , where n  is the number of cities in TSP. This
computation cost is not so expensive but will bring a considerable advantage to the
performance of crossover.

4 Experiments

In this paper, a series of experiments are conducted to evaluate the performance of
Edge-T. These experiments adopt eight TSP instances [TSPLIB] which are widely
used as benchmarks. Table 1 lists these experimental instances and their respective
optimal tour length.

The schemes of GA employed in our experiments are steady-state GA, path repre-
sentation, linear-ranking selection with bias 1.25. Here we set complete crossover
( 0.1=cp ) and no mutation ( 0=mp ) to examine the absolute influence of crossover
on performance, although the utilization of mutation may result in better solutions.
The survival strategy is to delete the worst member of a family, which consists of two
parents and their children. A population size of 500, 1000, and 2000 chromosomes is
empirically set for problems fewer than 300 cities, lin318, and pcb442 respectively.
Each experimental setting includes 30 independent runs where population is initial-
ized randomly.

The experiments first examine the impact of tabu list upon the alternation of pa-
rental edges. Second, convergence comparisons are presented to verify the perform-
ance of Edge-T in subsection 4.2.

4.1 Influence of Tabu List

Edge-T applies a tabu list to restrain the edge inheritance from the same parent. We
examine the effectiveness of this tabu restriction with an inspection upon the compo-
sition of a tour. Here only the results on the TSP instance d198 (198 cities) is pre-
sented because of the similar results as other instances. Figure 4 shows the propor-
tions of edges from alternate parents, successive parents, and failure treatment. The
result indicates that Edge-T has a steadily higher proportion of alternate parents than
Edge-3. This outcome validates the effectiveness of tabu restriction in alternating par-
ents. Its corresponding influence on convergent performance will be further checked
in the next subsection. In addition, Edge-T has a higher failure proportion than that of
Edge-3. This higher failure rate of Edge-T reveals that the failure treatment plays an
important role in the performance.

4.2   Performance Comparison

The effectiveness of Edge-T on solution quality and convergence speed is further ex-
amined by comparison with Edge-3, Edge-Tx (Edge-T without tabu restriction), and
Edge-Ty (Edge-T without tabu restriction and using the failure treatment of Edge-3).
Table 1 and Table 3 summarize the experimental results on TSP instances ranging
from 51 to 442 cities.
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Fig. 4. Proportion of edges from alternate parents, successive parents, and failure treatment
of Edge-3 (left) and Edge-T (right).

Table 1 compares the solution quality. Edge-T achieves the best solution quality on
average and the smallest standard deviation on all experiments. Edge-Tx, meanwhile,
obtains better solution and smaller standard deviation than Edge-3 and Edge-Ty does.
However, there is no clear difference between Edge-3 and Edge-Ty. A series of one-
tailed t-tests is further performed to validate the significance of superiority in terms of
solution quality. Table 2 presents the statistical results of t-test on the experimental
data of Table 1. With a confidence level 01.0=α , the optimal solutions obtained
from Edge-3 and Edge-Ty do not differ significantly on most problems except lin318
and pcb442. It indicates the priority function of Edge-T does not result in significant
difference in performance from Edge-3. In addition, the statistical results 01.0<p  in
the (EdgeTy – EdgeTx) and (Edge3 – EdgeTx) column validate that Edge-Tx can
achieve better solution than Edge-Ty and Edge-3. These two outcomes support that
the greedy manner can improve the failure treatment of Edge-3. Furthermore, the pro-
posed algorithm Edge-T, achieves even better solution quality than Edge-Tx accord-
ing to the t-test results in the (EdgeTx – EdgeT) column of Table 2. This preferable
outcome confirms the effectiveness of tabu restriction on the advanced improvement
of Edge-Tx. As shown in Figure 4, the tabu restriction results in not only a larger-
scale parental alternation but also a higher failure rate. The superior performance of
Edge-T, therefore, is attributed to a joint effort of these two effects.

Table 1. Comparative tour length of Edge-3 and Edge-T series

Edge-3 Edge-Ty Edge-Tx Edge-TTSP   in-
stance Opt

Ave Std Ave Std Ave Std Ave Std
eil51 426 430.0 3.2 430.6 3.9 427.8 2.2 427.0 0.6
gr96 51229 54456 1190 54448 1019 51915 445 51288 121

eil101 629 673.8 10.8 676.4 10.0 641.0 5.0 630.3 2.0
lin105 14379 15643 478 15795 514 14717 236 14477 53
d198 15780 19397 506 19366 403 16300 228 15879 38

kroA200 29368 39327 1114 40006 1216 30457 313 29657 167
lin318 42029 93830 12548 80808 13552 44156 2470 43371 873
pcb442 50778 171426 11345 155100 9276 62914 2964 59071 2471
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Table 2. t-test of solution quality in term of tour length

Edge3 – EdgeTy Edge3 – EdgeTx EdgeTy – EdgeTx EdgeTx – EdgeTTSP   in-
stance )(dft p )(dft p )(dft p )(dft p
eil51 -0.65 (55) 0.259 3.10 (51) 1.56E-03 3.43 (45) 6.61E-04 1.92 (33) 3.17E-02
gr96 0.03 (56) 0.489 10.96 (36) 2.57E-13 12.48 (39) 1.71E-15 7.45 (33) 7.36E-09

eil101 -0.97 (57) 0.169 15.09 (40) 2.06E-18 17.34 (42) 4.65E-21 10.88 (38) 1.54E-13
lin105 -1.19 (57) 0.120 9.52 (42) 2.43E-12 10.44 (40) 2.75E-13 5.43 (31) 3.09E-06
d198 0.26 (55) 0.397 30.59 (40) 1.19E-29 36.27 (45) 2.94E-35 9.98 (30) 2.42E-11

kroA200 -2.26 (57) 0.014 42.00 (33) 1.59E-30 41.65 (32) 9.44E-30 12.35 (44) 3.38E-16
lin318 3.86 (57) 1.45E-04 21.27 (31) 2.35E-20 14.57 (30) 1.88E-15 1.64 (36) 5.47E-02
pcb442 6.10 (55) 5.50E-08 50.69 (32) 1.94E-32 51.85 (34) 2.99E-34 5.45 (56) 5.75E-07

df : degree of freedom

Next, Table 3 compares the convergence speed in terms of the number of evalua-
tions. Here the number of evaluations is defined as the number of reproduction, which
is also equal to the number of crossovers. From Table 3, we can find Edge-T and
Edge-Tx converges with fewer evaluations than Edge-3 and Edge-Ty; furthermore,
Edge-T uses much fewer evaluations than Edge-Tx does. In most cases, Edge-T uses
less than half number of evaluations that Edge-3 and Edge-Ty needs. Additionally,
Edge-T gives a smaller standard deviation in the number of evaluations than other ap-
proaches. The one-tailed t-test is also given in Table 4 to test the significance of im-
provement in convergence speed. Here we still follow the confidence level 01.0=α .
The results of the test (Edge3 – EdgeTy) in Table 4 indicate Edge-Ty can converge
faster than Edge-3 does in problem gr96, lin105, and kroA200, but this superiority
does not exist in other test instances. In addition, the test (Edge3 – EdgeTx) and
(EdgeTy – EdgeTx) shows that Edge-Tx is capable of a faster convergence than
Edge-3 and Edge-Ty, which demonstrate the benefit of greedy manner. Finally, the
test (EdgeT – EdgeTx) confirms that Edge-T can converge further faster than EdgeTx.
This favorable outcome proves the utility of tabu restriction in accelerating conver-
gence speed.

Table 3. Comparative number of evaluations

Edge-3 Edge-Ty Edge-Tx Edge-TTSP  in-
stance Ave Std Ave Std Ave Std Ave Std
eil51 39599 3768 39730 4282 31788 4287 17766 2306
gr96 103932 8967 98328 7247 61236 5882 33811 4607

eil101 119691 18883 112961 15579 76612 10092 51660 7498
lin105 147018 13249 137509 16380 83175 11424 42045 3985
d198 653707 95779 608002 83460 284786 38178 171094 27040

kroA200 474843 57895 431967 59104 196572 19833 123077 12613
lin318 1666891 379840 1707216 411641 1473512 239780 784920 140114
pcb442 2910549 952821 3110969 979338 2423476 738469 1534216 851173
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Table 4. t-test of convergence speed in terms of number of evaluations

Edge3 – EdgeTy Edge3 – EdgeTx EdgeTy – EdgeTx EdgeTx – EdgeTTSP   in-
stance )(dft p )(dft p )(dft p )(dft p
eil51 -0.13 (57) 0.450 7.50 (57) 2.37E-10 7.18 (57) 8.00E-10 15.78 (44) 4.99E-20
gr96 2.66 (55) 0.005 21.81 (50) 1.70E-27 21.77 (55) 5.27E-29 20.10 (54) 4.84E-27

eil101 1.51 (55) 0.069 11.02 (44) 1.53E-14 10.73 (49) 9.35E-15 10.87 (53) 2.10E-15
lin105 2.47 (55) 0.008 19.99 (56) 1.83E-27 14.90 (51) 1.61E-20 18.62 (35) 4.86E-20
d198 1.97 (56) 0.027 19.60 (37) 1.97E-21 19.29 (40) 3.63E-22 13.31 (52) 1.11E-18

kroA200 2.84 (57) 0.003 24.91 (35) 3.72E-24 20.68 (35) 1.66E-21 17.13 (49) 1.26E-22
lin318 -0.39 (57) 0.347 2.36 (48) 1.12E-02 2.69 (46) 5.00E-03 13.58 (46) 5.23E-18
pcb442 -0.80 (57) 0.213 2.21 (54) 1.56E-02 3.07 (53) 1.69E-03 4.32 (56) 3.20E-05

5 Conclusions and Future Work

In this work, we propose two strategies to improve the performance of edge recombi-
nation. First, inheritance of edges from alternate parents can enhance the performance
of crossover. Second, a greedy manner in connecting sub-tours contributes to better
results. The proposed algorithm Edge-T, based on edge recombination, is designed to
verify these two strategies. The first strategy is accomplished through a penal way.
Edge-T uses a tabu list to record the preceding parent and prohibit successive edge
from inheriting the same parent. In addition, a greedy manner based on the second
strategy is used to handle failures in Edge-T. The failure in edge recombination oc-
curs when there is no city available to choose. This deadlock tour segment, however,
can be viewed as a sub-tour. Accordingly Edge-T attempts to introduce the shortest
edge to connect these sub-tours.

Several widely-used TSP instances sized from 51 cities to 442 cities are imple-
mented to examine the performance of Edge-T. Experimental results demonstrate the
capability that tabu restriction can increase the alternation of parents in inheritance.
Furthermore, the performance comparisons confirm the two proposed strategies can
significantly enhance Edge-T and result in better performance than Edge-3 in terms of
both solution quality and convergence speed.

Much more work is needed to validate the effectiveness of the proposed strategies.
First, the scale of TSP instances used in our experiments is relatively small. In addi-
tion, even though Edge-T can obtain better results than Edge-3 in these experiments,
it does not achieve the optimal solution. We reason this defect due to the lack of local
search. Genetic algorithms can efficiently and effectively lead the search to the
promising region; however, without local search it becomes more than difficult to
probe into the optimum, especially when the length of chromosome gets longer.
Therefore, local search, such as 2-opt [Cro58] and Lin-Kernighan [LK73], is probably
used to reinforce the search ability. Moreover, larger-scale TSP instances should be
included in the benchmarks. Second, we disabled the mutation operator in our ex-
periments for observing the behavior of crossover. This setting will cause the search
to focus on exploitation, but on the other hand, exploration also needs to be consid-
ered. Hence, the operator which can enhance exploration, e.g. mutation or 2-opt,
should be performed with crossover. Currently we are studying and conducting ex-
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periments on these issues. More specific analysis on the impact of the two proposed
strategies upon Edge-T and applications of these two strategies to other crossovers are
also underway.
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